Metadata
Key | Value |
---|---|
engine | transformers |
prompt | instruct |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i+1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i+1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i + 1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i + 1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i + 1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in (i + 1)..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
```
// XCTAssertTrue failed
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount < 0 {
return []
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespacesAndNewlines))
currentGroup = ""
}
}
if openCount != 0 {
return []
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount < 0 {
return []
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespacesAndNewlines))
currentGroup = ""
}
}
if openCount != 0 {
return []
}
return result
}
```
// XCTAssertTrue failed
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
```
// XCTAssertTrue failed
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == " " {
continue
}
currentGroup.append(char)
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == " " {
continue
}
currentGroup.append(char)
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openCount: Int = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openCount: Int = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup.append(char)
} else if char == ")" {
openCount -= 1
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == " " {
continue
}
currentGroup.append(char)
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == " " {
continue
}
currentGroup.append(char)
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
openCount -= 1
}
currentGroup.append(char)
if openCount == 0 {
result.append(currentGroup.trimmingCharacters(in: .whitespaces))
currentGroup = ""
}
}
return result
}
```
// XCTAssertTrue failed
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(numbers.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(numbers.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
let mad = absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
return mad
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for number in numbers {
result.append(number)
result.append(delimeter)
}
if !result.isEmpty {
result.removeLast()
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for number in numbers {
result.append(number)
result.append(delimeter)
}
if result.count > 0 {
result.removeLast()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for number in numbers {
result.append(number)
result.append(delimeter)
}
if result.count > 0 {
result.removeLast()
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
if count > maxCount {
maxCount = count
}
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
if count > maxCount {
maxCount = count
}
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
if count > maxCount {
maxCount = count
}
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
if count > maxCount {
maxCount = count
}
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
for group in parenString.split(separator: " ") {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
for group in parenString.split(separator: " ") {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var count = 0
var maxCount = 0
for char in group {
if char == "(" {
count += 1
maxCount = max(maxCount, count)
} else if char == ")" {
count -= 1
}
}
result.append(maxCount)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
if currentDepth > maxDepth {
maxDepth = currentDepth
}
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
if currentDepth > maxDepth {
maxDepth = currentDepth
}
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
for group in parenString.split(separator: " ") {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
for group in parenString.split(separator: " ") {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result = [max]
for i in 1..<numbers.count {
max = max(max, numbers[i])
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result = [max]
for i in 1..<numbers.count {
max = max(max, numbers[i])
result.append(max)
}
return result
}
```
max = max(max, numbers[i]) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var maxNum = numbers[0]
var result = [maxNum]
for i in 1..<numbers.count {
maxNum = max(maxNum, numbers[i])
result.append(maxNum)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxNum = numbers[0]
var result = [maxNum]
for i in 1..<numbers.count {
maxNum = max(maxNum, numbers[i])
result.append(maxNum)
}
return result
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var maxNum = numbers[0]
maxArray.append(maxNum)
for i in 1..<numbers.count {
if numbers[i] > maxNum {
maxNum = numbers[i]
}
maxArray.append(maxNum)
}
return maxArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var maxNum = numbers[0]
maxArray.append(maxNum)
for i in 1..<numbers.count {
if numbers[i] > maxNum {
maxNum = numbers[i]
}
maxArray.append(maxNum)
}
return maxArray
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var currentMax = numbers[0]
maxArray.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxArray.append(currentMax)
}
return maxArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var currentMax = numbers[0]
maxArray.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxArray.append(currentMax)
}
return maxArray
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxNumbers = [Int]()
var currentMax = numbers[0]
maxNumbers.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxNumbers.append(currentMax)
}
return maxNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxNumbers = [Int]()
var currentMax = numbers[0]
maxNumbers.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxNumbers.append(currentMax)
}
return maxNumbers
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxNum = numbers[0]
var result = [maxNum]
for i in 1..<numbers.count {
maxNum = max(maxNum, numbers[i])
result.append(maxNum)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxNum = numbers[0]
var result = [maxNum]
for i in 1..<numbers.count {
maxNum = max(maxNum, numbers[i])
result.append(maxNum)
}
return result
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxNumbers = [Int]()
var currentMax = numbers[0]
maxNumbers.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxNumbers.append(currentMax)
}
return maxNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxNumbers = [Int]()
var currentMax = numbers[0]
maxNumbers.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxNumbers.append(currentMax)
}
return maxNumbers
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var currentMax = numbers[0]
maxArray.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxArray.append(currentMax)
}
return maxArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var currentMax = numbers[0]
maxArray.append(currentMax)
for i in 1..<numbers.count {
if numbers[i] > currentMax {
currentMax = numbers[i]
}
maxArray.append(currentMax)
}
return maxArray
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var max = numbers[0]
maxArray.append(max)
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
maxArray.append(max)
}
return maxArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var max = numbers[0]
maxArray.append(max)
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
maxArray.append(max)
}
return maxArray
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var max = numbers[0]
maxArray.append(max)
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
maxArray.append(max)
}
return maxArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxArray = [Int]()
var max = numbers[0]
maxArray.append(max)
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
maxArray.append(max)
}
return maxArray
}
```
// Fatal error: Index out of range
func makePalindrome(string: String) -> String {
var palindrome = string
var postfix = ""
for i in 0..<string.count {
let index = string.index(string.startIndex, offsetBy: i)
let substring = string[index...]
if substring == String(substring.reversed()) {
postfix = substring
break
}
}
let prefix = string.prefix(string.count - postfix.count)
let reversedPrefix = String(prefix.reversed())
palindrome.append(reversedPrefix)
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var palindrome = string
var postfix = ""
for i in 0..<string.count {
let index = string.index(string.startIndex, offsetBy: i)
let substring = string[index...]
if substring == String(substring.reversed()) {
postfix = substring
break
}
}
let prefix = string.prefix(string.count - postfix.count)
let reversedPrefix = String(prefix.reversed())
palindrome.append(reversedPrefix)
return palindrome
}
```
postfix = substring // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'
func makePalindrome(string: String) -> String {
var str = string
var i = str.count
while i > 0 {
if isPalindrome(string: str) {
break
}
str.insert(str.first, at: str.endIndex)
i -= 1
}
return str
}
func isPalindrome(string: String) -> Bool {
let characters = Array(string)
return characters == characters.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var i = str.count
while i > 0 {
if isPalindrome(string: str) {
break
}
str.insert(str.first, at: str.endIndex)
i -= 1
}
return str
}
func isPalindrome(string: String) -> Bool {
let characters = Array(string)
return characters == characters.reversed()
}
```
str.insert(str.first, at: str.endIndex) // no exact matches in call to instance method 'insert'
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
for i in stride(from: 0, to: str.count, by: 1) {
let suffix = String(str[str.index(str.startIndex, offsetBy: i)...])
if suffix == String(suffix.reversed()) {
palindrome = suffix
break
}
}
let prefix = String(str[..<str.index(str.startIndex, offsetBy: str.count - palindrome.count)])
return str + String(prefix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
for i in stride(from: 0, to: str.count, by: 1) {
let suffix = String(str[str.index(str.startIndex, offsetBy: i)...])
if suffix == String(suffix.reversed()) {
palindrome = suffix
break
}
}
let prefix = String(str[..<str.index(str.startIndex, offsetBy: str.count - palindrome.count)])
return str + String(prefix.reversed())
}
```
var str = string // variable 'str' was never mutated; consider changing to 'let' constant
func makePalindrome(string: String) -> String {
var palindrome = string
var suffix = ""
for char in string.reversed() {
suffix.append(char)
if string.hasPrefix(suffix) {
let prefix = string.dropFirst(suffix.count)
palindrome.append(String(prefix.reversed()))
break
}
}
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var palindrome = string
var suffix = ""
for char in string.reversed() {
suffix.append(char)
if string.hasPrefix(suffix) {
let prefix = string.dropFirst(suffix.count)
palindrome.append(String(prefix.reversed()))
break
}
}
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
while !isPalindrome(str) {
palindrome = String(str.first!) + palindrome
str.removeFirst()
}
return string + palindrome
}
func isPalindrome(_ str: String) -> Bool {
return str == String(str.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
while !isPalindrome(str) {
palindrome = String(str.first!) + palindrome
str.removeFirst()
}
return string + palindrome
}
func isPalindrome(_ str: String) -> Bool {
return str == String(str.reversed())
}
```
func makePalindrome(string: String) -> String {
var str = string
var longestPalindrome = ""
for i in 0..<str.count {
let substring = String(str[str.index(str.startIndex, offsetBy: i)...])
if substring == String(substring.reversed()) {
longestPalindrome = substring
break
}
}
let prefix = String(str[..<str.index(str.startIndex, offsetBy: str.count - longestPalindrome.count)])
return str + String(prefix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var longestPalindrome = ""
for i in 0..<str.count {
let substring = String(str[str.index(str.startIndex, offsetBy: i)...])
if substring == String(substring.reversed()) {
longestPalindrome = substring
break
}
}
let prefix = String(str[..<str.index(str.startIndex, offsetBy: str.count - longestPalindrome.count)])
return str + String(prefix.reversed())
}
```
var str = string // variable 'str' was never mutated; consider changing to 'let' constant
func makePalindrome(string: String) -> String {
var str = Array(string)
var revStr = Array(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str[i] == revStr[i] {
palindrome.append(str[i])
} else {
break
}
}
let prefix = Array(str.dropFirst(palindrome.count))
let reversedPrefix = Array(prefix.reversed())
let result = Array(str + reversedPrefix)
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = Array(string)
var revStr = Array(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str[i] == revStr[i] {
palindrome.append(str[i])
} else {
break
}
}
let prefix = Array(str.dropFirst(palindrome.count))
let reversedPrefix = Array(prefix.reversed())
let result = Array(str + reversedPrefix)
return String(result)
}
```
var str = Array(string) // variable 'str' was never mutated; consider changing to 'let' constant
var revStr = Array(str.reversed()) // variable 'revStr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var str = string
var reversed = String(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str.hasPrefix(reversed.suffix(i)) {
palindrome = str + String(reversed.prefix(str.count - i))
break
}
}
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var reversed = String(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str.hasPrefix(reversed.suffix(i)) {
palindrome = str + String(reversed.prefix(str.count - i))
break
}
}
return palindrome
}
```
var str = string // variable 'str' was never mutated; consider changing to 'let' constant
var reversed = String(str.reversed()) // variable 'reversed' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
for i in 0..<str.count {
let substring = String(str.dropFirst(i))
if substring == String(substring.reversed()) {
palindrome = substring
break
}
}
let prefix = str.prefix(str.count - palindrome.count)
return str + String(prefix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = string
var palindrome = ""
for i in 0..<str.count {
let substring = String(str.dropFirst(i))
if substring == String(substring.reversed()) {
palindrome = substring
break
}
}
let prefix = str.prefix(str.count - palindrome.count)
return str + String(prefix.reversed())
}
```
var str = string // variable 'str' was never mutated; consider changing to 'let' constant
func makePalindrome(string: String) -> String {
var str = Array(string)
var revStr = Array(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str[i] == revStr[i] {
palindrome.append(str[i])
} else {
break
}
}
let prefix = Array(str.dropFirst(palindrome.count))
let reversedPrefix = Array(prefix.reversed())
let result = Array(str + reversedPrefix)
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var str = Array(string)
var revStr = Array(str.reversed())
var palindrome = ""
for i in 0..<str.count {
if str[i] == revStr[i] {
palindrome.append(str[i])
} else {
break
}
}
let prefix = Array(str.dropFirst(palindrome.count))
let reversedPrefix = Array(prefix.reversed())
let result = Array(str + reversedPrefix)
return String(result)
}
```
var str = Array(string) // variable 'str' was never mutated; consider changing to 'let' constant
var revStr = Array(str.reversed()) // variable 'revStr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, j) in zip(a, b) {
if i != j {
result += "1"
} else {
result += "0"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, j) in zip(a, b) {
if i != j {
result += "1"
} else {
result += "0"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bChar = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aChar != bChar
result.append(String(xorResult ? "1" : "0"))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bChar = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aChar != bChar
result.append(String(xorResult ? "1" : "0"))
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorBit = aBit != bBit ? "1" : "0"
result.append(xorBit)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorBit = aBit != bBit ? "1" : "0"
result.append(xorBit)
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, char) in a.enumerated() {
let aBit = Int(String(char))
let bBit = Int(String(b[a.index(a.startIndex, offsetBy: index)]))
let xorResult = aBit != bBit
result += String(xorResult ? 1 : 0)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, char) in a.enumerated() {
let aBit = Int(String(char))
let bBit = Int(String(b[a.index(a.startIndex, offsetBy: index)]))
let xorResult = aBit != bBit
result += String(xorResult ? 1 : 0)
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
let aInt = Int(String(char))
let bInt = Int(String(b[a.index(a.startIndex, offsetBy: i)]))
let xorResult = aInt ^ bInt
result += String(xorResult)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
let aInt = Int(String(char))
let bInt = Int(String(b[a.index(a.startIndex, offsetBy: i)]))
let xorResult = aInt ^ bInt
result += String(xorResult)
}
return result
}
```
let xorResult = aInt ^ bInt // binary operator '^' cannot be applied to two 'Int?' operands
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorBit = aBit != bBit ? 1 : 0
result.append(String(xorBit))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorBit = aBit != bBit ? 1 : 0
result.append(String(xorBit))
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, j) in zip(a, b) {
let xor = Int(String(i)) != Int(String(j))
result.append(xor ? "1" : "0")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, j) in zip(a, b) {
let xor = Int(String(i)) != Int(String(j))
result.append(xor ? "1" : "0")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = Int(String(a[a.index(a.startIndex, offsetBy: i)]))
let bBit = Int(String(b[b.index(b.startIndex, offsetBy: i)]))
let xorResult = aBit != bBit
result.append(String(xorResult ? "1" : "0"))
}
return result
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count > $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count > $1.count }
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count > $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count > $1.count }
}
```
// XCTAssertTrue failed
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let t = b
b = a % b
a = t
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let t = b
b = a % b
a = t
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = a
a = b
b = temp % b
}
return a
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]...string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]...string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
```
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]...string[string.index(string.startIndex, offsetBy: i)])) // missing argument label 'describing:' in call
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
let prefix = String(string.prefix(i))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
let prefix = String(string.prefix(i))
prefixes.append(prefix)
}
return prefixes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
let prefix = String(string[string.index(string.startIndex, offsetBy: i)...])
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
let prefix = String(string[string.index(string.startIndex, offsetBy: i)...])
prefixes.append(prefix)
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: i)]))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]..<string.index(string.startIndex, offsetBy: i)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 1...string.count {
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]..<string.index(string.startIndex, offsetBy: i)))
}
return prefixes
}
```
prefixes.append(String(string[string.index(string.startIndex, offsetBy: 0)]..<string.index(string.startIndex, offsetBy: i))) // no exact matches in call to initializer
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += "\(i) "
}
result += "\(n)"
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += "\(i) "
}
result += "\(n)"
return result
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += "\(i) "
}
result += "\(n)"
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += "\(i) "
}
result += "\(n)"
return result
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += String(i) + " "
}
result += String(n)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += String(i) + " "
}
result += String(n)
return result
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += String(i) + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += String(i) + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n+1 {
result += String(i) + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n+1 {
result += String(i) + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += String(i) + " "
}
result += String(n)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0..<n {
result += String(i) + " "
}
result += String(n)
return result
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
```
set.insert(char.lowercased()) // cannot convert value of type 'String' to expected argument type 'Character'
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
```
set.insert(char.lowercased()) // cannot convert value of type 'String' to expected argument type 'Character'
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string {
characters.insert(char.lowercased())
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string {
characters.insert(char.lowercased())
}
return characters.count
}
```
characters.insert(char.lowercased()) // cannot convert value of type 'String' to expected argument type 'Character'
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string {
characters.insert(char.lowercased())
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string {
characters.insert(char.lowercased())
}
return characters.count
}
```
characters.insert(char.lowercased()) // cannot convert value of type 'String' to expected argument type 'Character'
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased())
}
return set.count
}
```
set.insert(char.lowercased()) // cannot convert value of type 'String' to expected argument type 'Character'
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string.lowercased() {
set.insert(char)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string.lowercased() {
set.insert(char)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characters = Set<Character>()
for char in string.lowercased() {
characters.insert(char)
}
return characters.count
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: numberWords.enumerated().map { ($0.element, $0.offset) })
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: numberWords.enumerated().map { ($0.element, $0.offset) })
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").map { numberWords.firstIndex(of: $0)! }.sorted().map { numberWords[$0] }.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").map { numberWords.firstIndex(of: $0)! }.sorted().map { numberWords[$0] }.joined(separator: " ")
return sortedNumbers
}
```
let sortedNumbers = numbers.split(separator: " ").map { numberWords.firstIndex(of: $0)! }.sorted().map { numberWords[$0] }.joined(separator: " ") // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberWords.firstIndex(of: $0)! < numberWords.firstIndex(of: $1)! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: zip(numberWords, 0..<numberWords.count))
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: numberWords.enumerated().map { ($0.element, $0.offset) })
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberWordsDict = Dictionary(uniqueKeysWithValues: numberWords.enumerated().map { ($0.element, $0.offset) })
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberWordsDict[$0]! < numberWordsDict[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = sortedNumbers[1] - sortedNumbers[0]
for i in 0..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = sortedNumbers[1] - sortedNumbers[0]
for i in 0..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = sortedNumbers[1] - sortedNumbers[0]
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = sortedNumbers[1] - sortedNumbers[0]
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPair
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = abs(sortedNumbers[i] - sortedNumbers[i - 1])
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = abs(sortedNumbers[i] - sortedNumbers[i - 1])
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPair
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var minDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var minDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 0..<sortedNumbers.count - 1 {
let difference = abs(sortedNumbers[i] - sortedNumbers[i + 1])
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var minDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 0..<sortedNumbers.count - 1 {
let difference = abs(sortedNumbers[i] - sortedNumbers[i + 1])
if difference < minDifference {
minDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var sortedNumbers = numbers.sorted()
var minDifference = sortedNumbers[1] - sortedNumbers[0]
var result = (sortedNumbers[0], sortedNumbers[1])
for i in 1..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return result
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
let range = max - min // binary operator '-' cannot be applied to two 'Double?' operands
return numbers.map { ($0 - min) / range } // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
let range = max - min // binary operator '-' cannot be applied to two 'Double?' operands
return numbers.map { ($0 - min) / range } // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 0.0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 0.0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else {
return numbers
}
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else {
return numbers
}
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
let range = max - min // binary operator '-' cannot be applied to two 'Double?' operands
return numbers.map { ($0 - min) / range } // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 0.0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 0.0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()
let max = numbers.max()
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
let range = max - min // binary operator '-' cannot be applied to two 'Double?' operands
return numbers.map { ($0 - min) / range } // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0
let max = numbers.max() ?? 0
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 0
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return -1
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return -1
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 0
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 2..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var i = 2
while i * i <= number {
if number % i != 0 {
i += 1
} else {
number /= i
factors.append(i)
}
}
if number > 1 {
factors.append(number)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var i = 2
while i * i <= number {
if number % i != 0 {
i += 1
} else {
number /= i
factors.append(i)
}
}
if number > 1 {
factors.append(number)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var num = n
while divisor <= num {
if num % divisor == 0 {
factors.append(divisor)
num /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var num = n
while divisor <= num {
if num % divisor == 0 {
factors.append(divisor)
num /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var divisor = 2
var number = n
while divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var encounteredNumbers = Set<Int>()
for number in numbers {
if encounteredNumbers.contains(number) {
continue
}
result.append(number)
encounteredNumbers.insert(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var encounteredNumbers = Set<Int>()
for number in numbers {
if encounteredNumbers.contains(number) {
continue
}
result.append(number)
encounteredNumbers.insert(number)
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var encounteredNumbers = Set<Int>()
for number in numbers {
if encounteredNumbers.contains(number) {
continue
}
result.append(number)
encounteredNumbers.insert(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var encounteredNumbers = Set<Int>()
for number in numbers {
if encounteredNumbers.contains(number) {
continue
}
result.append(number)
encounteredNumbers.insert(number)
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var encounteredNumbers = Set<Int>()
return numbers.filter { encounteredNumbers.insert($0).inserted }
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
return String(string.map { $0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return String(string.map { $0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) })
}
```
func flipCase(string: String) -> String {
return String(string.map { $0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return String(string.map { $0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) })
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
}
return result
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
var result = l
for (index, value) in zip(thirdIndices, thirdValues) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
var result = l
for (index, value) in zip(thirdIndices, thirdValues) {
result[index] = value
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var sortedElements = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
sortedElements.append(l[i])
}
sortedElements.sort()
var result = [Int]()
var sortedIndex = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(sortedElements[sortedIndex])
sortedIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var sortedElements = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
sortedElements.append(l[i])
}
sortedElements.sort()
var result = [Int]()
var sortedIndex = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(sortedElements[sortedIndex])
sortedIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
thirdElements.append(l[i])
}
thirdElements.sort()
var j = 0
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = thirdElements[j]
j += 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
thirdElements.append(l[i])
}
thirdElements.sort()
var j = 0
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = thirdElements[j]
j += 1
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var sortedThirds = [Int]()
var result = [Int]()
for (index, value) in l.enumerated() {
if index % 3 == 0 {
sortedThirds.append(value)
}
}
sortedThirds.sort()
var sortedThirdsIndex = 0
for (index, value) in l.enumerated() {
if index % 3 == 0 {
result.append(sortedThirds[sortedThirdsIndex])
sortedThirdsIndex += 1
} else {
result.append(value)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var sortedThirds = [Int]()
var result = [Int]()
for (index, value) in l.enumerated() {
if index % 3 == 0 {
sortedThirds.append(value)
}
}
sortedThirds.sort()
var sortedThirdsIndex = 0
for (index, value) in l.enumerated() {
if index % 3 == 0 {
result.append(sortedThirds[sortedThirdsIndex])
sortedThirdsIndex += 1
} else {
result.append(value)
}
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var l = l
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
for (i, index) in thirdIndices.enumerated() {
l[index] = thirdValues[i]
}
return l
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
for (i, index) in thirdIndices.enumerated() {
l[index] = thirdValues[i]
}
return l
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
thirdElements.append(l[i])
}
thirdElements.sort()
var j = 0
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = thirdElements[j]
j += 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
thirdElements.append(l[i])
}
thirdElements.sort()
var j = 0
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = thirdElements[j]
j += 1
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdIndices = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
thirdIndices.append(i)
}
}
let sortedThirdIndices = thirdIndices.sorted { l[$0] < l[$1] }
for (i, j) in zip(thirdIndices, sortedThirdIndices) {
result[i] = l[j]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
var thirdIndices = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
thirdIndices.append(i)
}
}
let sortedThirdIndices = thirdIndices.sorted { l[$0] < l[$1] }
for (i, j) in zip(thirdIndices, sortedThirdIndices) {
result[i] = l[j]
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var l = l
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
for (i, index) in thirdIndices.enumerated() {
l[index] = thirdValues[i]
}
return l
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
var thirdIndices = [Int]()
var thirdValues = [Int]()
for i in stride(from: 0, to: l.count, by: 3) {
thirdIndices.append(i)
thirdValues.append(l[i])
}
thirdValues.sort()
for (i, index) in thirdIndices.enumerated() {
l[index] = thirdValues[i]
}
return l
}
```
func sortThird(l: [Int]) -> [Int] {
var thirdElements = [Int]()
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
thirdElements.append(l[i])
}
}
thirdElements.sort()
var j = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(thirdElements[j])
j += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var thirdElements = [Int]()
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
thirdElements.append(l[i])
}
}
thirdElements.sort()
var j = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(thirdElements[j])
j += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var sortedElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
sortedElements.append(l[i])
}
sortedElements.sort()
var result = [Int]()
var sortedIndex = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(sortedElements[sortedIndex])
sortedIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var sortedElements = [Int]()
for i in stride(from: 2, to: l.count, by: 3) {
sortedElements.append(l[i])
}
sortedElements.sort()
var result = [Int]()
var sortedIndex = 0
for i in 0..<l.count {
if i % 3 == 0 {
result.append(sortedElements[sortedIndex])
sortedIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
// Fatal error: Index out of range
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
```
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
```
var set = Set(l) // variable 'set' was never mutated; consider changing to 'let' constant
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
```
var set = Set(l) // variable 'set' was never mutated; consider changing to 'let' constant
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set(l)
return Array(set).sorted()
}
```
var set = Set(l) // variable 'set' was never mutated; consider changing to 'let' constant
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueArray = Array(Set(l))
uniqueArray.sort()
return uniqueArray
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if (i % 11 == 0 || i % 13 == 0) {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if (i % 11 == 0 || i % 13 == 0) {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for digit in str {
if digit == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenElements = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenElements.append(l[i])
}
evenElements.sort()
var result = l
for (i, index) in evenIndices.enumerated() {
result[index] = evenElements[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenElements = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenElements.append(l[i])
}
evenElements.sort()
var result = l
for (i, index) in evenIndices.enumerated() {
result[index] = evenElements[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for (i, index) in evenIndices.enumerated() {
result[index] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for (i, index) in evenIndices.enumerated() {
result[index] = evenValues[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(index)
evenValues.append(value)
}
}
evenValues.sort()
var result = l
for (index, value) in evenIndices.enumerated() {
result[value] = evenValues[index]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for i in stride(from: 0, to: evenIndices.count, by: 1) {
result[evenIndices[i]] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for i in stride(from: 0, to: evenIndices.count, by: 1) {
result[evenIndices[i]] = evenValues[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for i in stride(from: 0, to: evenIndices.count, by: 1) {
result[evenIndices[i]] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(i)
evenValues.append(l[i])
}
evenValues.sort()
var result = l
for i in stride(from: 0, to: evenIndices.count, by: 1) {
result[evenIndices[i]] = evenValues[i]
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
var evenValues = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
evenIndices.append(i)
evenValues.append(l[i])
}
}
evenValues.sort()
var result = l
for i in 0..<evenIndices.count {
result[evenIndices[i]] = evenValues[i]
}
return result
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var count = 0
var num = 2
while count < n {
if isPrime(num) && isFibonacci(num) {
count += 1
}
num += 1
}
return num - 1
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func isFibonacci(_ num: Int) -> Bool {
var a = 0
var b = 1
while b < num {
let temp = a
a = b
b = temp + b
}
return b == num
}
```
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
var left = i + 1
var right = nums.count - 1
while left < right {
let sum = nums[i] + nums[left] + nums[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
var left = i + 1
var right = nums.count - 1
while left < right {
let sum = nums[i] + nums[left] + nums[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
let target = -nums[i]
var left = i + 1
var right = nums.count - 1
while left < right {
if nums[left] + nums[right] == target {
return true
} else if nums[left] + nums[right] < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
let target = -nums[i]
var left = i + 1
var right = nums.count - 1
while left < right {
if nums[left] + nums[right] == target {
return true
} else if nums[left] + nums[right] < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var sorted = l.sorted()
for i in 0..<sorted.count - 2 {
var left = i + 1
var right = sorted.count - 1
while left < right {
let sum = sorted[i] + sorted[left] + sorted[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sorted = l.sorted()
for i in 0..<sorted.count - 2 {
var left = i + 1
var right = sorted.count - 1
while left < right {
let sum = sorted[i] + sorted[left] + sorted[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sorted = l.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
var left = i + 1
var right = nums.count - 1
while left < right {
let sum = nums[i] + nums[left] + nums[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var nums = l
nums.sort()
for i in 0..<nums.count - 2 {
if i > 0 && nums[i] == nums[i - 1] {
continue
}
var left = i + 1
var right = nums.count - 1
while left < right {
let sum = nums[i] + nums[left] + nums[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
var arr = l
arr.sort()
for i in 0..<n-2 {
if i > 0 && arr[i] == arr[i-1] {
continue
}
let target = -arr[i]
var left = i + 1
var right = n - 1
while left < right {
if arr[left] + arr[right] == target {
return true
} else if arr[left] + arr[right] < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
var arr = l
arr.sort()
for i in 0..<n-2 {
if i > 0 && arr[i] == arr[i-1] {
continue
}
let target = -arr[i]
var left = i + 1
var right = n - 1
while left < right {
if arr[left] + arr[right] == target {
return true
} else if arr[left] + arr[right] < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
} else {
set.insert(num)
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var number = x
var result = ""
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var number = x
var result = ""
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var number = x
var result = ""
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var number = x
var result = ""
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var num = x
var result = ""
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var num = x
var result = ""
while num > 0 {
let remainder = num % base
result = String(remainder) + result
num = num / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
let remainder = x % base
result = String(remainder) + result
x = x / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = String(remainder) + result
number /= base
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2
}
```
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
if n < 4 {
return 0
}
var fib = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(nextFib)
}
return fib[n-1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 4 {
return 0
}
var fib = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(nextFib)
}
return fib[n-1]
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
if n < 2 {
return 0
}
if n == 2 {
return 2
}
if n == 3 {
return 0
}
var fib = [0, 0, 2, 0]
for i in 4...n {
let nextFib = fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4]
fib.append(nextFib)
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 2 {
return 0
}
if n == 2 {
return 2
}
if n == 3 {
return 0
}
var fib = [0, 0, 2, 0]
for i in 4...n {
let nextFib = fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4]
fib.append(nextFib)
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
let next = fib[3] + fib[2] + fib[1] + fib[0]
fib.removeFirst()
fib.append(next)
}
return fib[3]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
let next = fib[3] + fib[2] + fib[1] + fib[0]
fib.removeFirst()
fib.append(next)
}
return fib[3]
}
```
for i in 4...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
for i in 4..<n {
let next = fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4]
fib.append(next)
}
return fib[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fibs = [0, 0, 2, 0]
for i in 4..<n {
let nextFib = fibs[i-1] + fibs[i-2] + fibs[i-3] + fibs[i-4]
fibs.append(nextFib)
}
return fibs[n]
}
```
// Fatal error: Index out of range
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let length = sortedArray.count
if length % 2 == 0 {
let midIndex1 = length / 2 - 1
let midIndex2 = length / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (length - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let length = sortedArray.count
if length % 2 == 0 {
let midIndex1 = length / 2 - 1
let midIndex2 = length / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (length - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0 // cannot convert value of type 'Int' to expected argument type 'Double'
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let mid1 = sortedArray[(count - 1) / 2]
let mid2 = sortedArray[count / 2]
return (Double(mid1) + Double(mid2)) / 2.0
} else {
return Double(sortedArray[(count - 1) / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let mid1 = sortedArray[(count - 1) / 2]
let mid2 = sortedArray[count / 2]
return (Double(mid1) + Double(mid2)) / 2.0
} else {
return Double(sortedArray[(count - 1) / 2])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
return (sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0 // cannot convert value of type 'Int' to expected argument type 'Double'
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let length = sortedArray.count
if length % 2 == 0 {
let midIndex1 = length / 2 - 1
let midIndex2 = length / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2
} else {
let midIndex = (length - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let length = sortedArray.count
if length % 2 == 0 {
let midIndex1 = length / 2 - 1
let midIndex2 = length / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2
} else {
let midIndex = (length - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return Double(sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return Double(sortedArray[midIndex1] + sortedArray[midIndex2]) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex1 = count / 2 - 1
let midIndex2 = count / 2
return (Double(sortedArray[midIndex1]) + Double(sortedArray[midIndex2])) / 2.0
} else {
let midIndex = (count - 1) / 2
return Double(sortedArray[midIndex])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let characters = Array(text)
let reversedCharacters = Array(characters.reversed())
return characters == reversedCharacters
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let characters = Array(text)
let reversedCharacters = Array(characters.reversed())
return characters == reversedCharacters
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
base = (base * base) % p
exponent = exponent / 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
base = (base * base) % p
exponent = exponent / 2
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exp = n
while exp > 0 {
if exp % 2 == 1 {
result = (result * base) % p
}
exp = exp >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exp = n
while exp > 0 {
if exp % 2 == 1 {
result = (result * base) % p
}
exp = exp >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
var exponent = p
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
var exponent = p
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exp = n
while exp > 0 {
if exp % 2 == 1 {
result = (result * base) % p
}
exp = exp >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exp = n
while exp > 0 {
if exp % 2 == 1 {
result = (result * base) % p
}
exp = exp >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
var exponent = p
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
var exponent = p
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent = exponent >> 1
base = (base * base) % p
}
return result
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for number in l {
if number >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for number in l {
if number >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var dict0 = [Character: Int]()
var dict1 = [Character: Int]()
for char in s0 {
dict0[char, default: 0] += 1
}
for char in s1 {
dict1[char, default: 0] += 1
}
return dict0 == dict1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var dict0 = [Character: Int]()
var dict1 = [Character: Int]()
for char in s0 {
dict0[char, default: 0] += 1
}
for char in s1 {
dict1[char, default: 0] += 1
}
return dict0 == dict1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var chars0 = Array(s0)
var chars1 = Array(s1)
chars0.sort()
chars1.sort()
return chars0 == chars1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var chars0 = Array(s0)
var chars1 = Array(s1)
chars0.sort()
chars1.sort()
return chars0 == chars1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Array = Array(s0)
var s1Array = Array(s1)
s0Array.sort()
s1Array.sort()
return s0Array == s1Array
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Array = Array(s0)
var s1Array = Array(s1)
s0Array.sort()
s1Array.sort()
return s0Array == s1Array
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var chars0 = Array(s0)
var chars1 = Array(s1)
chars0.sort()
chars1.sort()
return chars0 == chars1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var chars0 = Array(s0)
var chars1 = Array(s1)
chars0.sort()
chars1.sort()
return chars0 == chars1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0Chars = Array(s0)
var s1Chars = Array(s1)
s0Chars.sort()
s1Chars.sort()
return s0Chars == s1Chars
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
var a = 0
var b = 1
for _ in 0..<n {
let temp = a
a = b
b = temp + b
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
var a = 0
var b = 1
for _ in 0..<n {
let temp = a
a = b
b = temp + b
}
return a
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2..<n {
let temp = a
a = b
b = temp + b
}
return b
}
```
// XCTAssertTrue failed
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty || stack.last != "<" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty || stack.last != "<" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
var increasing = true
var decreasing = true
for i in 0..<l.count - 1 {
if l[i] > l[i + 1] {
increasing = false
}
if l[i] < l[i + 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
set1.intersection(set2) // result of call to 'intersection' is unused
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = Set<Int>()
for element in l1 {
if l2.contains(element) {
commonElements.insert(element)
}
}
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = Set<Int>()
for element in l1 {
if l2.contains(element) {
commonElements.insert(element)
}
}
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
set1.intersection(set2) // result of call to 'intersection' is unused
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
set1.intersection(set2)
return Array(set1)
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
set1.intersection(set2) // result of call to 'intersection' is unused
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = Set<Int>()
for element in l1 {
if l2.contains(element) {
commonElements.insert(element)
}
}
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = Set<Int>()
for element in l1 {
if l2.contains(element) {
commonElements.insert(element)
}
}
return Array(commonElements).sorted()
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n /= 2
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n /= 2
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while (n % 2 == 0) {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while (n % i == 0) {
largestPrime = i
n /= i
}
}
if (n > 2) {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrime = -1
while n % 2 == 0 {
largestPrime = 2
n >>= 1
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
while n % i == 0 {
largestPrime = i
n /= i
}
}
if n > 2 {
largestPrime = n
}
return largestPrime
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "(" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty || stack.last != "(" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty || stack.removeLast() != "(" {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty || stack.removeLast() != "(" {
return false
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (i, x) in xs.enumerated() {
if i != 0 {
result.append(x * i)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
```
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i - 1] + fibfib[i - 2] + fibfib[i - 3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i - 1] + fibfib[i - 2] + fibfib[i - 3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n+1 {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [0, 0, 1]
for i in 3..<n {
fibfib.append(fibfib[i-1] + fibfib[i-2] + fibfib[i-3])
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.lowercased().last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.lowercased().last == "y" {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.lowercased().last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.lowercased().last == "y" {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shift = shift % len
let rotated = Array(str)
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined()
return rotatedStr
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shift = shift % len
let rotated = Array(str)
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined()
return rotatedStr
}
```
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // generic parameter 'Element' could not be inferred
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // value of type 'String.Element' (aka 'Character') has no member 'joined'
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // missing argument labels 'from:configuration:' in call
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // value of type 'String.Element' (aka 'Character') has no member 'joined'
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // cannot convert value of type 'PartialRangeFrom<Int>' to expected argument type 'Int'
let rotatedStr = Array(rotated[len - shift...].joined(), Array(rotated[0..<len - shift].joined())).joined() // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let start = str.index(str.startIndex, offsetBy: len - shiftMod)
let end = str.index(str.startIndex, offsetBy: len)
let result = str[start..<end] + str[..<start]
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let start = str.index(str.startIndex, offsetBy: len - shiftMod)
let end = str.index(str.startIndex, offsetBy: len)
let result = str[start..<end] + str[..<start]
return result
}
```
return result // cannot convert return expression of type 'Substring' to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let startIndex = str.index(str.startIndex, offsetBy: len - shiftMod)
let endIndex = str.index(str.startIndex, offsetBy: len)
let shifted = str[startIndex..<endIndex]
let remaining = str[str.startIndex..<startIndex]
return shifted + remaining
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let startIndex = str.index(str.startIndex, offsetBy: len - shiftMod)
let endIndex = str.index(str.startIndex, offsetBy: len)
let shifted = str[startIndex..<endIndex]
let remaining = str[str.startIndex..<startIndex]
return shifted + remaining
}
```
return shifted + remaining // cannot convert return expression of type 'Substring' to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let start = str.index(str.startIndex, offsetBy: len - shiftMod)
let end = str.index(str.startIndex, offsetBy: len)
let shifted = str[start..<end] + str[str.startIndex..<start]
return shifted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let start = str.index(str.startIndex, offsetBy: len - shiftMod)
let end = str.index(str.startIndex, offsetBy: len)
let shifted = str[start..<end] + str[str.startIndex..<start]
return shifted
}
```
return shifted // cannot convert return expression of type 'Substring' to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let shifted = Array(str)
var result = ""
for i in 0..<len {
let index = (i + shiftMod) % len
result.append(shifted[index])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let shifted = Array(str)
var result = ""
for i in 0..<len {
let index = (i + shiftMod) % len
result.append(shifted[index])
}
return result
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let index = str.index(str.startIndex, offsetBy: shiftMod)
return String(str[index...]) + String(str[..<index])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let index = str.index(str.startIndex, offsetBy: shiftMod)
return String(str[index...]) + String(str[..<index])
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let startIndex = str.index(str.startIndex, offsetBy: len - shiftMod)
let endIndex = str.index(str.startIndex, offsetBy: len)
let shifted = str[startIndex..<endIndex]
let remaining = str[str.startIndex..<startIndex]
return shifted + remaining
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let startIndex = str.index(str.startIndex, offsetBy: len - shiftMod)
let endIndex = str.index(str.startIndex, offsetBy: len)
let shifted = str[startIndex..<endIndex]
let remaining = str[str.startIndex..<startIndex]
return shifted + remaining
}
```
return shifted + remaining // cannot convert return expression of type 'Substring' to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let shiftMod = shift % length
let index = str.index(str.startIndex, offsetBy: length - shiftMod)
let end = str.index(after: index)
return String(str[index..<end] + str[..<index])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let shiftMod = shift % length
let index = str.index(str.startIndex, offsetBy: length - shiftMod)
let end = str.index(after: index)
return String(str[index..<end] + str[..<index])
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let index = str.index(str.startIndex, offsetBy: shiftMod)
let end = str.index(after: index)
return String(str[end...]) + String(str[..<end])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shiftMod = shift % len
let index = str.index(str.startIndex, offsetBy: shiftMod)
let end = str.index(after: index)
return String(str[end...]) + String(str[..<end])
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
var result = ""
for i in 0..<len {
result.append(str[(len - shift + i) % len])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
var result = ""
for i in 0..<len {
result.append(str[(len - shift + i) % len])
}
return result
}
```
result.append(str[(len - shift + i) % len]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // value of type 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') has no member 'isUppercase'
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // value of type 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') has no member 'isUppercase'
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<String.UnicodeScalarView.Element>' (aka 'Predicate<Unicode.Scalar>') that does not accept a closure
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) })
}
```
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) }) // value of type 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') has no member 'isUppercase'
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) })
}
```
return s.unicodeScalars.filter { $0.isUppercase }.reduce(0, { $0 + Int($1.value) }) // value of type 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') has no member 'isUppercase'
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<String.UnicodeScalarView.Element>' (aka 'Predicate<Unicode.Scalar>') that does not accept a closure
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<String.UnicodeScalarView.Element>' (aka 'Predicate<Unicode.Scalar>') that does not accept a closure
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<String.UnicodeScalarView.Element>' (aka 'Predicate<Unicode.Scalar>') that does not accept a closure
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // value of type 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') has no member 'isUppercase'
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +)
}
```
return s.unicodeScalars.filter { $0.isASCII && $0.isUppercase }.map { Int($0.value) }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<String.UnicodeScalarView.Element>' (aka 'Predicate<Unicode.Scalar>') that does not accept a closure
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.split(separator: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.split(separator: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
let mangoCount = n - appleCount - orangeCount // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let mangoCount = n - appleCount - orangeCount // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.split(separator: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.split(separator: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
let mangoCount = n - appleCount - orangeCount // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let mangoCount = n - appleCount - orangeCount // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let appleCount = Int(components[0]) ?? 0
let orangeCount = Int(components[3]) ?? 0
return n - appleCount - orangeCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let appleCount = Int(components[0]) ?? 0
let orangeCount = Int(components[3]) ?? 0
return n - appleCount - orangeCount
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - (appleCount + orangeCount)
return mangoCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let appleCount = Int(components[0])
let orangeCount = Int(components[3])
let mangoCount = n - (appleCount + orangeCount)
return mangoCount
}
```
let mangoCount = n - (appleCount + orangeCount) // binary operator '+' cannot be applied to two 'Int?' operands
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
let mangoes = n - (apples + oranges)
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
let mangoes = n - (apples + oranges)
return mangoes
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
let mangoes = n - (apples + oranges)
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
let mangoes = n - (apples + oranges)
return mangoes
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[3]) ?? 0
return n - apples - oranges
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEven, smallestEvenIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEven, smallestEvenIndex]
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue! {
smallestEvenValue = value
smallestEvenIndex = index
} else if value == smallestEvenValue {
if index < smallestEvenIndex! {
smallestEvenIndex = index
}
}
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue! {
smallestEvenValue = value
smallestEvenIndex = index
} else if value == smallestEvenValue {
if index < smallestEvenIndex! {
smallestEvenIndex = index
}
}
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
}
}
if smallestIndex == -1 {
return []
} else {
return [smallestEven, smallestIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
}
}
if smallestIndex == -1 {
return []
} else {
return [smallestEven, smallestIndex]
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEven, smallestEvenIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEven, smallestEvenIndex]
}
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEven, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
} else {
return [smallestEvenValue, smallestEvenIndex]
}
}
```
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if frequency[num] >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if frequency[num] >= num {
return num
}
}
return -1
}
```
if frequency[num] >= num { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if frequency[num] >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if frequency[num] >= num {
return num
}
}
return -1
}
```
if frequency[num] >= num { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sortedKeys = frequency.keys.sorted(by: >)
for key in sortedKeys {
if key == frequency[key] {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if num == frequency[num] {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in frequency.keys.sorted(by: >) {
if num == frequency[num] {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
for num in lst.sorted(by: >) {
if let count = frequency[num] {
if count >= num {
return num
}
}
}
return -1
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
sides.sort() // cannot use mutating member on immutable value: 'sides' is a 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
sides.sort() // cannot use mutating member on immutable value: 'sides' is a 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
sides.sort() // cannot use mutating member on immutable value: 'sides' is a 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
sides.sort() // cannot use mutating member on immutable value: 'sides' is a 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
sides.sort()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
sides.sort() // cannot use mutating member on immutable value: 'sides' is a 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let semiPerimeter = Double(sortedSides[0] + sortedSides[1] + sortedSides[2]) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(sortedSides[0])) * (semiPerimeter - Double(sortedSides[1])) * (semiPerimeter - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let semiPerimeter = Double(sortedSides[0] + sortedSides[1] + sortedSides[2]) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(sortedSides[0])) * (semiPerimeter - Double(sortedSides[1])) * (semiPerimeter - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2.0
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = Double(sides.reduce(0, +)) / 2.0
let area = sqrt(s * (s - Double(sortedSides[0])) * (s - Double(sortedSides[1])) * (s - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let semiPerimeter = Double(sortedSides[0] + sortedSides[1] + sortedSides[2]) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(sortedSides[0])) * (semiPerimeter - Double(sortedSides[1])) * (semiPerimeter - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let semiPerimeter = Double(sortedSides[0] + sortedSides[1] + sortedSides[2]) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(sortedSides[0])) * (semiPerimeter - Double(sortedSides[1])) * (semiPerimeter - Double(sortedSides[2])))
return round(area * 100) / 100
} else {
return -1
}
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversedQ = q
reversedQ.reverse()
return q == reversedQ
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversedQ = q
reversedQ.reverse()
return q == reversedQ
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
for i in 0..<q.count/2 {
if q[i] != q[q.count - 1 - i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
for i in 0..<q.count/2 {
if q[i] != q[q.count - 1 - i] {
return false
}
}
return true
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var q = q
q.sort()
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - 1 - i] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var q = q
q.sort()
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - 1 - i] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
var reversedQ = q
reversedQ.reverse()
if q == reversedQ && q.reduce(0, +) <= w {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var reversedQ = q
reversedQ.reverse()
if q == reversedQ && q.reduce(0, +) <= w {
return true
}
return false
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversedQ = q
reversedQ.reverse()
if q == reversedQ {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversedQ = q
reversedQ.reverse()
if q == reversedQ {
return true
}
return false
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var q = q
q.sort()
var isPalindrome = true
for i in 0..<q.count/2 {
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
let sum = q.reduce(0, +)
return isPalindrome && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var q = q
q.sort()
var isPalindrome = true
for i in 0..<q.count/2 {
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
let sum = q.reduce(0, +)
return isPalindrome && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var isPalindrome = true
var sum = 0
for i in 0..<q.count {
sum += q[i]
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome && sum <= w
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
changes += 1
}
i += 1
j -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
changes += 1
}
i += 1
j -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var changes = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Count = lst1.reduce(0, { $0 + $1.count })
let lst2Count = lst2.reduce(0, { $0 + $1.count })
return lst1Count < lst2Count ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Count = lst1.reduce(0, { $0 + $1.count })
let lst2Count = lst2.reduce(0, { $0 + $1.count })
return lst1Count < lst2Count ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.joined().count
let lst2Chars = lst2.joined().count
return lst1Chars < lst2Chars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.joined().count
let lst2Chars = lst2.joined().count
return lst1Chars < lst2Chars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.map { $0.count }.reduce(0, +)
let lst2Chars = lst2.map { $0.count }.reduce(0, +)
return lst1Chars < lst2Chars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.map { $0.count }.reduce(0, +)
let lst2Chars = lst2.map { $0.count }.reduce(0, +)
return lst1Chars < lst2Chars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.joined().count
let lst2Chars = lst2.joined().count
return lst1Chars < lst2Chars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Chars = lst1.joined().count
let lst2Chars = lst2.joined().count
return lst1Chars < lst2Chars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0, { $0 + $1.count })
let lst2TotalChars = lst2.reduce(0, { $0 + $1.count })
if lst1TotalChars < lst2TotalChars {
return lst1
} else if lst1TotalChars > lst2TotalChars {
return lst2
} else {
return lst1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0, { $0 + $1.count })
let lst2TotalChars = lst2.reduce(0, { $0 + $1.count })
if lst1TotalChars < lst2TotalChars {
return lst1
} else if lst1TotalChars > lst2TotalChars {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0, { $0 + $1.count })
let lst2TotalChars = lst2.reduce(0, { $0 + $1.count })
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0, { $0 + $1.count })
let lst2TotalChars = lst2.reduce(0, { $0 + $1.count })
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
return totalChars1 < totalChars2 ? lst1 : lst2
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
var i = 2
while i * i <= n {
while n % i == 0 {
n /= i
count += 1
}
i += 1
}
if n > 1 {
count += 1
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
var i = 2
while i * i <= n {
while n % i == 0 {
n /= i
count += 1
}
i += 1
}
if n > 1 {
count += 1
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
var i = 2
while i * i <= n {
while n % i == 0 {
n /= i
count += 1
}
i += 1
}
if n > 1 {
count += 1
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
var i = 2
while i * i <= n {
while n % i == 0 {
n /= i
count += 1
}
i += 1
}
if n > 1 {
count += 1
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var num = a
var count = 0
var i = 2
while i * i <= num {
if num % i == 0 {
num /= i
count += 1
} else {
i += 1
}
}
if num > 1 {
count += 1
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var num = a
var count = 0
var i = 2
while i * i <= num {
if num % i == 0 {
num /= i
count += 1
} else {
i += 1
}
}
if num > 1 {
count += 1
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var n = a
var count = 0
for i in 2...n {
while n % i == 0 {
n /= i
count += 1
}
}
return count == 3
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var num = n
while num < x {
num *= n
}
return num == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var num = n
while num < x {
num *= n
}
return num == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = n
while result < x {
result *= n
}
return result == x
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(round(cbrt(Double(a))))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let root = Int(round(cbrt(Double(a))))
return root * root * root == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(cbrt(Double(a))))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
let numArray = Array(num)
return numArray.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
let numArray = Array(num)
return numArray.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = Set(["2", "3", "5", "7", "B", "D"])
return num.filter { primeDigits.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primeDigits = Set(["2", "3", "5", "7", "B", "D"])
return num.filter { primeDigits.contains(String($0)) }.count
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = String(remainder) + binary
number = number / 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = String(remainder) + binary
number = number / 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var num = decimal
while num > 0 {
binary = String(num % 2) + binary
num = num / 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var num = decimal
while num > 0 {
binary = String(num % 2) + binary
num = num / 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
let char = s[s.index(s.startIndex, offsetBy: i)]
if set.contains(char) {
return false
}
set.insert(char)
if i % 3 == 2 {
set.removeAll()
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
let char = s[s.index(s.startIndex, offsetBy: i)]
if set.contains(char) {
return false
}
set.insert(char)
if i % 3 == 2 {
set.removeAll()
}
}
return true
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count - 2 {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
set.insert(s[s.index(s.startIndex, offsetBy: i + 1)])
set.insert(s[s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
set.removeAll()
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count - 2 {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
set.insert(s[s.index(s.startIndex, offsetBy: i + 1)])
set.insert(s[s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
set.removeAll()
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let set = Set(s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let set = Set(s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
if set.count == 3 {
set.removeAll()
}
}
return set.count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
if set.count == 3 {
set.removeAll()
}
}
return set.count == 0
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
if set.count == 3 {
set.removeAll()
}
}
return set.count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var set = Set<Character>()
for i in 0..<s.count {
set.insert(s[s.index(s.startIndex, offsetBy: i)])
if set.count == 3 {
set.removeAll()
}
}
return set.count == 0
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let set = Set(s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let set = Set(s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)])
if set.count != 3 {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var count = 0
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] != s[s.index(s.startIndex, offsetBy: i + 1)] &&
s[s.index(s.startIndex, offsetBy: i)] != s[s.index(s.startIndex, offsetBy: i + 2)] &&
s[s.index(s.startIndex, offsetBy: i + 1)] != s[s.index(s.startIndex, offsetBy: i + 2)] {
count += 1
}
}
return count == s.count - 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var count = 0
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] != s[s.index(s.startIndex, offsetBy: i + 1)] &&
s[s.index(s.startIndex, offsetBy: i)] != s[s.index(s.startIndex, offsetBy: i + 2)] &&
s[s.index(s.startIndex, offsetBy: i + 1)] != s[s.index(s.startIndex, offsetBy: i + 2)] {
count += 1
}
}
return count == s.count - 2
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var chars = Array(s)
for i in 0..<chars.count - 2 {
if chars[i] == chars[i + 1] || chars[i] == chars[i + 2] || chars[i + 1] == chars[i + 2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var chars = Array(s)
for i in 0..<chars.count - 2 {
if chars[i] == chars[i + 1] || chars[i] == chars[i + 2] || chars[i + 1] == chars[i + 2] {
return false
}
}
return true
}
```
var chars = Array(s) // variable 'chars' was never mutated; consider changing to 'let' constant
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] ||
s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] ||
s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] ||
s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] ||
s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n <= 0 {
return 0
}
if n == 1 {
return 2
}
return 2 * (10 ^ (n - 1))
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
} else {
return 2 * (10 ^ (n - 1))
}
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var N = N
while N > 0 {
sum += N % 2
N /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var N = N
while N > 0 {
sum += N % 2
N /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
var result = ""
let words = s.components(separatedBy: " ")
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
let words = s.components(separatedBy: " ")
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let sortedChars = Array(word).sorted()
orderedWords.append(String(sortedChars))
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let sortedChars = Array(word).sorted()
orderedWords.append(String(sortedChars))
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
var result = ""
let words = s.split(separator: " ")
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
let words = s.split(separator: " ")
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let sortedChars = Array(word).sorted()
orderedWords.append(String(sortedChars))
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let sortedChars = Array(word).sorted()
orderedWords.append(String(sortedChars))
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.lowercased().sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var orderedWords = [String]()
for word in words {
let sortedWord = String(word.lowercased().sorted())
orderedWords.append(sortedWord)
}
return orderedWords.joined(separator: " ")
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for i in 0..<lst.count {
for j in 0..<lst[i].count {
if lst[i][j] == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for i in 0..<lst.count {
for j in 0..<lst[i].count {
if lst[i][j] == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort {
if $0.0 == $1.0 {
return $0.1 > $1.1
}
return $0.0 < $1.0
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort {
if $0.0 == $1.0 {
return $0.1 > $1.1
}
return $0.0 < $1.0
}
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for i in 0..<lst.count {
for j in 0..<lst[i].count {
if lst[i][j] == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for i in 0..<lst.count {
for j in 0..<lst[i].count {
if lst[i][j] == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
if (array.first! + array.last!) % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort()
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newChar = Character(Unicode.Scalar((ascii - 97 + 2 * 2) % 26 + 97)!)
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newChar = Character(Unicode.Scalar((ascii - 97 + 2 * 2) % 26 + 97)!)
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
```
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
let encryptedAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(encryptedAsciiValue)!))
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
let encryptedAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(encryptedAsciiValue)!))
}
return encryptedString
}
```
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char.lowercased()) {
let encryptedIndex = (index + 2 * 2) % 26
let encryptedChar = "abcdefghijklmnopqrstuvwxyz"[encryptedIndex]
encryptedString.append(encryptedChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char.lowercased()) {
let encryptedIndex = (index + 2 * 2) % 26
let encryptedChar = "abcdefghijklmnopqrstuvwxyz"[encryptedIndex]
encryptedString.append(encryptedChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
if let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newAscii = (ascii - 97 + 2 * 2) % 26 + 97
encrypted.append(Character(Unicode.Scalar(newAscii)!))
} else {
encrypted.append(char)
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newAscii = (ascii - 97 + 2 * 2) % 26 + 97
encrypted.append(Character(Unicode.Scalar(newAscii)!))
} else {
encrypted.append(char)
}
}
return encrypted
}
```
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
if asciiValue >= 97 && asciiValue <= 122 {
let newAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(newAsciiValue)!))
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
if asciiValue >= 97 && asciiValue <= 122 {
let newAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(newAsciiValue)!))
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newChar = Character(Unicode.Scalar((ascii - 97 + 4) % 26 + 97)!)
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let newChar = Character(Unicode.Scalar((ascii - 97 + 4) % 26 + 97)!)
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
```
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
if asciiValue >= 97 && asciiValue <= 122 {
let newAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(newAsciiValue)!))
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let asciiValue = Int(char.asciiValue!)
if asciiValue >= 97 && asciiValue <= 122 {
let newAsciiValue = (asciiValue - 97 + 4) % 26 + 97
encryptedString.append(Character(Unicode.Scalar(newAsciiValue)!))
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let encryptedChar = (ascii - 97 + 2 * 2) % 26 + 97
encrypted.append(Character(Unicode.Scalar(encryptedChar)!))
} else {
encrypted.append(char)
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
let ascii = Int(char.asciiValue!)
if ascii >= 97 && ascii <= 122 {
let encryptedChar = (ascii - 97 + 2 * 2) % 26 + 97
encrypted.append(Character(Unicode.Scalar(encryptedChar)!))
} else {
encrypted.append(char)
}
}
return encrypted
}
```
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) {
let newIndex = (index + 2 * 2) % 26
let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encrypted = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) {
let newIndex = (index + 2 * 2) % 26
let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
encrypted.append(newChar)
} else {
encrypted.append(char)
}
}
return encrypted
}
```
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) { // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
let newIndex = (index + 2 * 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) {
let newIndex = (index + 2 * 2) % 26
let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
encryptedString.append(newChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) {
let newIndex = (index + 2 * 2) % 26
let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
encryptedString.append(newChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
if let index = "abcdefghijklmnopqrstuvwxyz".index(of: Character(char.lowercased())) { // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
let newIndex = (index + 2 * 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int? = nil
var secondSmallest: Int? = nil
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || num < secondSmallest! && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int? = nil
var secondSmallest: Int? = nil
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || num < secondSmallest! && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
var sortedArray = Array(lst)
sortedArray.sort()
var smallest = sortedArray[0]
for i in 1..<sortedArray.count {
if sortedArray[i] > smallest {
return sortedArray[i]
}
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var sortedArray = Array(lst)
sortedArray.sort()
var smallest = sortedArray[0]
for i in 1..<sortedArray.count {
if sortedArray[i] > smallest {
return sortedArray[i]
}
}
return nil
}
```
var smallest = sortedArray[0] // variable 'smallest' was never mutated; consider changing to 'let' constant
// Fatal error: Index out of range
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int?
var secondSmallest: Int?
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || num < secondSmallest! && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int?
var secondSmallest: Int?
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || num < secondSmallest! && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
```
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var uniqueNumbers = Array(Set(lst))
uniqueNumbers.sort()
if uniqueNumbers.count < 2 {
return nil
} else {
return uniqueNumbers[1]
}
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int? = nil
var secondSmallest: Int? = nil
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || (num < secondSmallest! && num != smallest!) {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest: Int? = nil
var secondSmallest: Int? = nil
for num in lst {
if smallest == nil || num < smallest! {
secondSmallest = smallest
smallest = num
} else if secondSmallest == nil || (num < secondSmallest! && num != smallest!) {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredomCount = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredomCount = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredCount = 0
let sentences = S.components(separatedBy: ". ")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredCount += 1
}
}
return boredCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredCount = 0
let sentences = S.components(separatedBy: ". ")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredCount += 1
}
}
return boredCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredCount = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredCount += 1
}
}
return boredCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredCount = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredCount += 1
}
}
return boredCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredoms = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ".")
var boredoms = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
boredoms += 1
}
}
return boredoms
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
var sentence = ""
for char in S {
sentence.append(char)
if sentence.hasPrefix("I") {
boredoms += 1
}
if char == "." || char == "?" || char == "!" {
sentence = ""
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
var sentence = ""
for char in S {
sentence.append(char)
if sentence.hasPrefix("I") {
boredoms += 1
}
if char == "." || char == "?" || char == "!" {
sentence = ""
}
}
return boredoms
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if let firstWord = words.first, firstWord.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ". ")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ". ")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ".")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
```
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt! || sum2 == xInt! || sum3 == yInt!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt! || sum2 == xInt! || sum3 == yInt!
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum1 = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum1 == zInt || sum2 == xInt || sum3 == yInt
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum1 = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum1 == zInt || sum2 == xInt || sum3 == yInt
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum1 = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum1 = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum1 = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum1 == zInt || sum2 == xInt || sum3 == yInt
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum1 = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum1 == zInt || sum2 == xInt || sum3 == yInt
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum1 = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum1 = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt! || sum2 == xInt! || sum3 == yInt!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt! || sum2 == xInt! || sum3 == yInt!
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
return sum == zInt! || sum2 == xInt! || sum3 == yInt! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt || sum2 == xInt || sum3 == yInt
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
let sum = xInt! + yInt!
let sum2 = xInt! + zInt!
let sum3 = yInt! + zInt!
return sum == zInt || sum2 == xInt || sum3 == yInt
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum = xInt! + yInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum2 = xInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
let sum3 = yInt! + zInt! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber {
return x == y + z || y == x + z || z == x + y
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber {
return x == y + z || y == x + z || z == x + y
}
return false
}
```
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
if x.isWholeNumber && y.isWholeNumber && z.isWholeNumber { // value of type 'Double' has no member 'isWholeNumber'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let x = Int(x)
let y = Int(y)
let z = Int(z)
if x == nil || y == nil || z == nil {
return false
}
let sum = x + y + z
return x == sum || y == sum || z == sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let x = Int(x)
let y = Int(y)
let z = Int(z)
if x == nil || y == nil || z == nil {
return false
}
let sum = x + y + z
return x == sum || y == sum || z == sum
}
```
if x == nil || y == nil || z == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if x == nil || y == nil || z == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if x == nil || y == nil || z == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
}
return false
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == nil || yInt == nil || zInt == nil {
return false
}
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
}
return false
}
```
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if xInt == nil || yInt == nil || zInt == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar((Int(lowerChar.asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage.append(Character(char.isUppercase ? nextChar.uppercased() : nextChar))
default:
encodedMessage.append(Character(char.isUppercase ? lowerChar.lowercased() : lowerChar.uppercased()))
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar((Int(lowerChar.asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage.append(Character(char.isUppercase ? nextChar.uppercased() : nextChar))
default:
encodedMessage.append(Character(char.isUppercase ? lowerChar.lowercased() : lowerChar.uppercased()))
}
}
return encodedMessage
}
```
encodedMessage.append(Character(char.isUppercase ? nextChar.uppercased() : nextChar)) // result values in '? :' expression have mismatching types 'String' and 'Character'
encodedMessage.append(Character(char.isUppercase ? nextChar.uppercased() : nextChar)) // missing argument label 'extendedGraphemeClusterLiteral:' in call
func encode(message: String) -> String {
var result = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!) + 2)
result.append(char.isUppercase ? Character(nextChar.lowercased()) : nextChar)
default:
result.append(char.isUppercase ? Character(lowerChar.lowercased()) : Character(lowerChar.uppercased()))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var result = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!) + 2)
result.append(char.isUppercase ? Character(nextChar.lowercased()) : nextChar)
default:
result.append(char.isUppercase ? Character(lowerChar.lowercased()) : Character(lowerChar.uppercased()))
}
}
return result
}
```
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!) + 2) // binary operator '+' cannot be applied to operands of type 'Unicode.Scalar' and 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!)!)
let nextCharPlus2 = Character(Unicode.Scalar((nextChar.asciiValue!) + 2)!)
encodedMessage.append(nextCharPlus2)
default:
if char.isUppercase {
encodedMessage.append(Character(char.lowercased()))
} else {
encodedMessage.append(Character(char.uppercased()))
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let lowerChar = Character(char.lowercased())
switch lowerChar {
case "a", "e", "i", "o", "u":
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!)!)
let nextCharPlus2 = Character(Unicode.Scalar((nextChar.asciiValue!) + 2)!)
encodedMessage.append(nextCharPlus2)
default:
if char.isUppercase {
encodedMessage.append(Character(char.lowercased()))
} else {
encodedMessage.append(Character(char.uppercased()))
}
}
}
return encodedMessage
}
```
let nextChar = Character(Unicode.Scalar(lowerChar.asciiValue!)!) // cannot force unwrap value of non-optional type 'Unicode.Scalar'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[index + 2]
encodedMessage.append(newChar)
} else if let index = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".firstIndex(of: char) {
let newChar = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"[index]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[index + 2]
encodedMessage.append(newChar)
} else if let index = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".firstIndex(of: char) {
let newChar = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"[index]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
let newChar = "aeiouAEIOU"[index + 2] // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar(index + 2)!)
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar(index + 2)!)
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
```
let newChar = String(Unicode.Scalar(index + 2)!) // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar((Int(char.asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage += char.isUppercase ? newChar.uppercased() : newChar.lowercased()
} else {
encodedMessage += char.isUppercase ? char.lowercased() : char.uppercased()
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar((Int(char.asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage += char.isUppercase ? newChar.uppercased() : newChar.lowercased()
} else {
encodedMessage += char.isUppercase ? char.lowercased() : char.uppercased()
}
}
return encodedMessage
}
```
if let index = "aeiouAEIOU".firstIndex(of: char) { // value 'index' was defined but never used; consider replacing with boolean test
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[(index + 2) % 10]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[(index + 2) % 10]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
```
let newChar = "aeiouAEIOU"[(index + 2) % 10] // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[(index + 2) % 10]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = "aeiouAEIOU"[(index + 2) % 10]
encodedMessage.append(newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
```
let newChar = "aeiouAEIOU"[(index + 2) % 10] // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(char).lowercased() == "u" ? "a" : String(char).lowercased() == "y" ? "a" : String(char).lowercased() == "z" ? "b" : String(char).lowercased() == "x" ? "c" : String(char).lowercased() == "w" ? "d" : String(char).lowercased() == "v" ? "e" : String(char).lowercased() == "t" ? "f" : String(char).lowercased() == "s" ? "g" : String(char).lowercased() == "r" ? "h" : String(char).lowercased() == "q" ? "i" : String(char).lowercased() == "p" ? "j" : String(char).lowercased() == "o" ? "k" : String(char).lowercased() == "n" ? "l" : String(char).lowercased() == "m" ? "n" : String(char).lowercased() == "l" ? "m" : String(char).lowercased() == "k" ? "n" : String(char).lowercased() == "j" ? "o" : String(char).lowercased() == "i" ? "p" : String(char).lowercased() == "h" ? "q" : String(char).lowercased() == "g" ? "r" : String(char).lowercased() == "f" ? "s" : String(char).lowercased() == "e" ? "t" : String(char).lowercased() == "d" ? "u" : String(char).lowercased() == "c" ? "v" : String(char).lowercased() == "b" ? "w" : String(char).lowercased() == "a" ? "x" : String(char).lowercased()
encodedMessage.append(newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(char).lowercased() == "u" ? "a" : String(char).lowercased() == "y" ? "a" : String(char).lowercased() == "z" ? "b" : String(char).lowercased() == "x" ? "c" : String(char).lowercased() == "w" ? "d" : String(char).lowercased() == "v" ? "e" : String(char).lowercased() == "t" ? "f" : String(char).lowercased() == "s" ? "g" : String(char).lowercased() == "r" ? "h" : String(char).lowercased() == "q" ? "i" : String(char).lowercased() == "p" ? "j" : String(char).lowercased() == "o" ? "k" : String(char).lowercased() == "n" ? "l" : String(char).lowercased() == "m" ? "n" : String(char).lowercased() == "l" ? "m" : String(char).lowercased() == "k" ? "n" : String(char).lowercased() == "j" ? "o" : String(char).lowercased() == "i" ? "p" : String(char).lowercased() == "h" ? "q" : String(char).lowercased() == "g" ? "r" : String(char).lowercased() == "f" ? "s" : String(char).lowercased() == "e" ? "t" : String(char).lowercased() == "d" ? "u" : String(char).lowercased() == "c" ? "v" : String(char).lowercased() == "b" ? "w" : String(char).lowercased() == "a" ? "x" : String(char).lowercased()
encodedMessage.append(newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
if let index = "aeiouAEIOU".firstIndex(of: char) { // value 'index' was defined but never used; consider replacing with boolean test
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar((Int(char.lowercased().asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage.append(char.isUppercase ? newChar.uppercased() : newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if let index = "aeiouAEIOU".firstIndex(of: char) {
let newChar = String(Unicode.Scalar((Int(char.lowercased().asciiValue!) - 96 + 2) % 26 + 96)!)
encodedMessage.append(char.isUppercase ? newChar.uppercased() : newChar)
} else {
encodedMessage.append(char.isUppercase ? char.lowercased() : char.uppercased())
}
}
return encodedMessage
}
```
let newChar = String(Unicode.Scalar((Int(char.lowercased().asciiValue!) - 96 + 2) % 26 + 96)!) // value of type 'String' has no member 'asciiValue'
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sumOfDigits = 0
while largestPrime > 0 {
sumOfDigits += largestPrime % 10
largestPrime /= 10
}
return sumOfDigits
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sumOfDigits = 0
while largestPrime > 0 {
sumOfDigits += largestPrime % 10
largestPrime /= 10
}
return sumOfDigits
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
func sumOfDigits(_ n: Int) -> Int {
var n = n
var sum = 0
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
func sumOfDigits(_ n: Int) -> Int {
var n = n
var sum = 0
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
var maxPrime = -1
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime > 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime > 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let lastDigitA = abs(a) % 10
let lastDigitB = abs(b) % 10
return lastDigitA * lastDigitB
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(String(s[s.index(s.startIndex, offsetBy: i)])) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(String(s[s.index(s.startIndex, offsetBy: i)])) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
count += 1
}
}
return count
}
```
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for i in stride(from: 0, to: s.count, by: 2) {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
count += 1
}
}
return count
}
```
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = ["A", "E", "I", "O", "U"]
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
return Int(rounded)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
return Int(rounded)
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
return Int(round(number))
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [n]
var current = n
for _ in 1..<n {
current = current % 2 == 0 ? current + 2 : current + 1
result.append(current)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [n]
var current = n
for _ in 1..<n {
current = current % 2 == 0 ? current + 2 : current + 1
result.append(current)
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var pile = [n]
var stoneCount = n
for _ in 1..<n {
stoneCount = stoneCount % 2 == 0 ? stoneCount + 2 : stoneCount + 1
pile.append(stoneCount)
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile = [n]
var stoneCount = n
for _ in 1..<n {
stoneCount = stoneCount % 2 == 0 ? stoneCount + 2 : stoneCount + 1
pile.append(stoneCount)
}
return pile
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 2
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 2
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current = current % 2 == 0 ? current + 2 : current + 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
if current % 2 == 0 {
current += 2
} else {
current += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
if current % 2 == 0 {
current += 2
} else {
current += 2
}
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [n]
var current = n
for _ in 1..<n {
if current % 2 == 0 {
current += 2
} else {
current += 2
}
result.append(current)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [n]
var current = n
for _ in 1..<n {
if current % 2 == 0 {
current += 2
} else {
current += 2
}
result.append(current)
}
return result
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
return words
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.letters).inverted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.letters).inverted)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(CharacterSet(charactersIn: ",")))
return words
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(CharacterSet(charactersIn: ",")))
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
return words
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.letters).inverted)
return words
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.letters).inverted)
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.whitespacesAndNewlines.union(.punctuationCharacters))
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 && i > result {
result = i
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 && i > result {
result = i
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 && i > result {
result = i
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 && i > result {
result = i
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var max = -1
for i in x...y {
if i % 2 == 0 && i > max {
max = i
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var max = -1
for i in x...y {
if i % 2 == 0 && i > max {
max = i
}
}
return max
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var maxEven = -1
for i in x...y {
if i % 2 == 0 && i > maxEven {
maxEven = i
}
}
return maxEven
}
```
// Fatal error: Range requires lowerBound <= upperBound
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = round(Double(n + m) / 2)
return .success(String(Int(avg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = round(Double(n + m) / 2)
return .success(String(Int(avg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = (n + m) / 2
let binary = String(avg, radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = (n + m) / 2
let binary = String(avg, radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = round(Double(n + m) / 2)
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = round(Double(n + m) / 2)
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = round(Double(n + m) / 2)
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let avg = round(Double(n + m) / 2)
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let average = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(average), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let average = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(average), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let binary = String(avg, radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let binary = String(avg, radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
return .success(String(Int(avg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
return .success(String(Int(avg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = round(Double(sum) / Double(m - n + 1))
let binary = String(Int(avg), radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = String(num)
if !digits.contains("2") && !digits.contains("4") && !digits.contains("6") && !digits.contains("8") {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = String(num)
if !digits.contains("2") && !digits.contains("4") && !digits.contains("6") && !digits.contains("8") {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains { $0.wholeNumberValue % 2 == 0 } {
continue
}
result.append(num)
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains { $0.wholeNumberValue % 2 == 0 } {
continue
}
result.append(num)
}
return result.sorted()
}
```
if digits.contains { $0.wholeNumberValue % 2 == 0 } { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !$0.hasEvenDigit() }.sorted()
}
extension Int {
func hasEvenDigit() -> Bool {
var num = self
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
return true
}
num /= 10
}
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !$0.hasEvenDigit() }.sorted()
}
extension Int {
func hasEvenDigit() -> Bool {
var num = self
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
return true
}
num /= 10
}
return false
}
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !["0", "2", "4", "6", "8"].contains(String($0)) }) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains(where: { Int(String($0)) % 2 == 0 }) {
continue
}
result.append(num)
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains(where: { Int(String($0)) % 2 == 0 }) {
continue
}
result.append(num)
}
return result.sorted()
}
```
if digits.contains(where: { Int(String($0)) % 2 == 0 }) { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains(where: { Int(String($0)) % 2 == 0 }) {
continue
}
result.append(num)
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
let digits = Array(String(num))
if digits.contains(where: { Int(String($0)) % 2 == 0 }) {
continue
}
result.append(num)
}
return result.sorted()
}
```
if digits.contains(where: { Int(String($0)) % 2 == 0 }) { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !$0.isNumber && $0.wholeNumberValue % 2 == 0 }) }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { String($0).contains(where: { !$0.isNumber && $0.wholeNumberValue % 2 == 0 }) }.sorted()
}
```
return x.filter { String($0).contains(where: { !$0.isNumber && $0.wholeNumberValue % 2 == 0 }) }.sorted() // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains(where: { $0.isNumber && Int(String($0)) % 2 == 0 }) }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains(where: { $0.isNumber && Int(String($0)) % 2 == 0 }) }.sorted()
}
```
return x.filter { !String($0).contains(where: { $0.isNumber && Int(String($0)) % 2 == 0 }) }.sorted() // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.sorted().reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.sorted().reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { numbers.contains($0) }
let sorted = filtered.sorted(by: >)
let reversed = sorted.map { names[$0 - 1] }
return reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { numbers.contains($0) }
let sorted = filtered.sorted(by: >)
let reversed = sorted.map { names[$0 - 1] }
return reversed
}
```
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
var result = [String]()
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
var result = [String]()
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
var result = [String]()
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
for num in arr {
if numbers.contains(num) {
result.append(names[numbers.firstIndex(of: num)!])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let sortedDigits = arr.filter { $0 >= 1 && $0 <= 9 }.sorted(by: >).map { digitNames[$0 - 1] }
return sortedDigits
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let sortedDigits = arr.filter { $0 >= 1 && $0 <= 9 }.sorted(by: >).map { digitNames[$0 - 1] }
return sortedDigits
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(abs(num))
var sum = 0
for digit in digits {
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(abs(num))
var sum = 0
for digit in digits {
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
```
sum += Int(String(digit)) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = Array(String(abs(num)))
var sum = 0
for digit in digits {
sum += Int(digit)!
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = Array(String(abs(num)))
var sum = 0
for digit in digits {
sum += Int(digit)!
}
if sum > 0 {
count += 1
}
}
return count
}
```
sum += Int(digit)! // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let numStr = String(num)
var sum = 0
for digit in numStr {
if digit == "-" {
continue
}
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let numStr = String(num)
var sum = 0
for digit in numStr {
if digit == "-" {
continue
}
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
```
sum += Int(String(digit)) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(abs(num))
var sum = 0
for digit in digits {
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(abs(num))
var sum = 0
for digit in digits {
sum += Int(String(digit))
}
if sum > 0 {
count += 1
}
}
return count
}
```
sum += Int(String(digit)) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).map { Int(String($0)) }
let sum = digits.reduce(0, +)
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).map { Int(String($0)) }
let sum = digits.reduce(0, +)
if sum > 0 {
count += 1
}
}
return count
}
```
let sum = digits.reduce(0, +) // cannot convert value of type '(Int) -> Int' to expected argument type '(Int, Int?) throws -> Int'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var num = abs(num)
var sum = 0
while num > 0 {
sum += num % 10
num /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var num = abs(num)
var sum = 0
while num > 0 {
sum += num % 10
num /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).compactMap { Int(String($0)) }
let sum = digits.reduce(0, +)
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).compactMap { Int(String($0)) }
let sum = digits.reduce(0, +)
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).map { Int(String($0)) }
if digits.reduce(0, +) > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = String(num).map { Int(String($0)) }
if digits.reduce(0, +) > 0 {
count += 1
}
}
return count
}
```
if digits.reduce(0, +) > 0 { // cannot convert value of type '(Int) -> Int' to expected argument type '(Int, Int?) throws -> Int'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = Array(String(num))
var sum = 0
for digit in digits {
if let intDigit = Int(String(digit)) {
sum += intDigit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let digits = Array(String(num))
var sum = 0
for digit in digits {
if let intDigit = Int(String(digit)) {
sum += intDigit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let numStr = String(num)
var sum = 0
for digit in numStr {
if let intDigit = Int(String(digit)) {
sum += intDigit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
let numStr = String(num)
var sum = 0
for digit in numStr {
if let intDigit = Int(String(digit)) {
sum += intDigit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate()
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate()
}
return false
}
```
arr.rotate() // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr
sortedArr.sort()
for _ in 0..<arr.count {
if arr == sortedArr {
return true
}
arr.rotate(by: 1)
}
return false
}
```
arr.rotate(by: 1) // value of type '[Int]' has no member 'rotate'
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
let sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = Array(arr[i...].prefix(arr.count - i) + arr[0..<i])
if shiftedArr == sortedArr {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
let sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = Array(arr[i...].prefix(arr.count - i) + arr[0..<i])
if shiftedArr == sortedArr {
return true
}
}
return false
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if oddCount > evenCount {
return "NO"
} else {
return "YES"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if oddCount > evenCount {
return "NO"
} else {
return "YES"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount > oddCount {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount > oddCount {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount1 = 0
var evenCount2 = 0
for num in lst1 {
if num % 2 == 0 {
evenCount1 += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount2 += 1
}
}
if evenCount1 + evenCount2 == lst1.count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount1 = 0
var evenCount2 = 0
for num in lst1 {
if num % 2 == 0 {
evenCount1 += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount2 += 1
}
}
if evenCount1 + evenCount2 == lst1.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if oddCount > evenCount {
return "NO"
} else {
return "YES"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if oddCount > evenCount {
return "NO"
} else {
return "YES"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount <= evenCount ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount <= evenCount ? "YES" : "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return oddCount > evenCount ? "NO" : "YES"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
let evenCount1 = lst1.filter { $0 % 2 == 0 }.count
let evenCount2 = lst2.filter { $0 % 2 == 0 }.count
let oddCount1 = lst1.count - evenCount1
let oddCount2 = lst2.count - evenCount2
return oddCount1 <= oddCount2 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
let evenCount1 = lst1.filter { $0 % 2 == 0 }.count
let evenCount2 = lst2.filter { $0 % 2 == 0 }.count
let oddCount1 = lst1.count - evenCount1
let oddCount2 = lst2.count - evenCount2
return oddCount1 <= oddCount2 ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
var maxWord = ""
for (word, count) in dict {
if count > maxCount {
maxCount = count
maxWord = word
}
}
var result = [String : Int]()
for (word, count) in dict {
if count == maxCount {
result[word] = count
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
var maxWord = ""
for (word, count) in dict {
if count > maxCount {
maxCount = count
maxWord = word
}
}
var result = [String : Int]()
for (word, count) in dict {
if count == maxCount {
result[word] = count
}
}
return result
}
```
if let count = dict[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in histogram {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in histogram {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
```
if let count = histogram[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if histogram[word] != nil {
histogram[word] = histogram[word]! + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (key, value) in histogram {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in histogram {
if value == maxCount {
result[key] = value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if histogram[word] != nil {
histogram[word] = histogram[word]! + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (key, value) in histogram {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in histogram {
if value == maxCount {
result[key] = value
}
}
return result
}
```
if histogram[word] != nil { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = histogram[word]! + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = histogram[word]! + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (_, count) in histogram {
maxCount = max(maxCount, count)
}
var result = [String : Int]()
for (word, count) in histogram {
if count == maxCount {
result[word] = count
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (_, count) in histogram {
maxCount = max(maxCount, count)
}
var result = [String : Int]()
for (word, count) in histogram {
if count == maxCount {
result[word] = count
}
}
return result
}
```
if let count = histogram[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var letterCount = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = letterCount[word] {
letterCount[word] = count + 1
} else {
letterCount[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in letterCount {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var letterCount = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = letterCount[word] {
letterCount[word] = count + 1
} else {
letterCount[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in letterCount {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
```
if let count = letterCount[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCount[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCount[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var letterCount = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = letterCount[word] {
letterCount[word] = count + 1
} else {
letterCount[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in letterCount {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var letterCount = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = letterCount[word] {
letterCount[word] = count + 1
} else {
letterCount[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in letterCount {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
```
if let count = letterCount[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCount[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCount[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if histogram.keys.contains(word) {
histogram[word] = histogram[word]! + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (_, count) in histogram {
maxCount = max(maxCount, count)
}
var result = [String : Int]()
for (word, count) in histogram {
if count == maxCount {
result[word] = count
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if histogram.keys.contains(word) {
histogram[word] = histogram[word]! + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
for (_, count) in histogram {
maxCount = max(maxCount, count)
}
var result = [String : Int]()
for (word, count) in histogram {
if count == maxCount {
result[word] = count
}
}
return result
}
```
if histogram.keys.contains(word) { // instance method 'contains' requires the types 'Dictionary<String, Int>.Keys.Element' (aka 'String') and 'Substring.Element' (aka 'Character') be equivalent
histogram[word] = histogram[word]! + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = histogram[word]! + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (_, count) in dict {
if count > maxCount {
maxCount = count
}
}
var result = [String : Int]()
for (word, count) in dict {
if count == maxCount {
result[word] = count
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (_, count) in dict {
if count > maxCount {
maxCount = count
}
}
var result = [String : Int]()
for (word, count) in dict {
if count == maxCount {
result[word] = count
}
}
return result
}
```
if let count = dict[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
histogram[word, default: 0] += 1
}
let maxCount = histogram.values.max()
return histogram.filter { $1 == maxCount }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
histogram[word, default: 0] += 1
}
let maxCount = histogram.values.max()
return histogram.filter { $1 == maxCount }
}
```
histogram[word, default: 0] += 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in histogram {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
var maxCount = 0
var maxLetters = [String]()
for (letter, count) in histogram {
if count > maxCount {
maxCount = count
maxLetters = [letter]
} else if count == maxCount {
maxLetters.append(letter)
}
}
var result = [String : Int]()
for letter in maxLetters {
result[letter] = maxCount
}
return result
}
```
if let count = histogram[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { $0.wholeNumberValue % 2 == 1 }.count
let newString = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newString)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { $0.wholeNumberValue % 2 == 1 }.count
let newString = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newString)
}
return result
}
```
let oddCount = string.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let count = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let count = str.filter { $0.wholeNumberValue % 2 == 1 }.count
let newStr = "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
result.append(newStr)
}
return result
}
```
let count = str.filter { $0.wholeNumberValue % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (i, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, str) in lst.enumerated() {
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count
let newStr = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(newStr)
}
return result
}
```
let oddCount = str.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = nums[0]
var currentSum = nums[0]
for i in 1..<nums.count {
currentSum = min(nums[i], currentSum + nums[i])
minSum = min(minSum, currentSum)
}
return minSum
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxWater = 0
var maxFill = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
maxWater += 1
}
}
}
maxFill = maxWater / capacity
if maxWater % capacity != 0 {
maxFill += 1
}
return maxFill
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxWater = 0
var maxFill = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
maxWater += 1
}
}
}
maxFill = maxWater / capacity
if maxWater % capacity != 0 {
maxFill += 1
}
return maxFill
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFill = 0
var currentFill = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
currentFill += 1
if currentFill == capacity {
maxFill += 1
currentFill = 0
}
}
}
}
return maxFill
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFill = 0
var currentFill = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
currentFill += 1
if currentFill == capacity {
maxFill += 1
currentFill = 0
}
}
}
}
return maxFill
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFillCount = 0
var currentFillCount = 0
var currentCapacity = 0
for row in grid {
for well in row {
if well == 1 {
currentFillCount += 1
if currentFillCount > currentCapacity {
maxFillCount += 1
currentCapacity = currentFillCount
}
}
}
currentFillCount = 0
}
return maxFillCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFillCount = 0
var currentFillCount = 0
var currentCapacity = 0
for row in grid {
for well in row {
if well == 1 {
currentFillCount += 1
if currentFillCount > currentCapacity {
maxFillCount += 1
currentCapacity = currentFillCount
}
}
}
currentFillCount = 0
}
return maxFillCount
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for i in 0..<grid.count {
var j = 0
while j < grid[i].count {
var k = 0
while k < capacity && j + k < grid[i].count && grid[i][j + k] == 1 {
k += 1
}
if k > 0 {
count += 1
j += k
} else {
j += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for i in 0..<grid.count {
var j = 0
while j < grid[i].count {
var k = 0
while k < capacity && j + k < grid[i].count && grid[i][j + k] == 1 {
k += 1
}
if k > 0 {
count += 1
j += k
} else {
j += 1
}
}
}
return count
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFillCount = 0
var currentFillCount = 0
var currentCapacity = 0
for row in grid {
for well in row {
if well == 1 {
if currentCapacity < capacity {
currentCapacity += 1
} else {
maxFillCount += currentFillCount
currentFillCount = 0
currentCapacity = 1
}
} else {
currentFillCount += 1
}
}
maxFillCount += currentFillCount
currentFillCount = 0
currentCapacity = 0
}
return maxFillCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFillCount = 0
var currentFillCount = 0
var currentCapacity = 0
for row in grid {
for well in row {
if well == 1 {
if currentCapacity < capacity {
currentCapacity += 1
} else {
maxFillCount += currentFillCount
currentFillCount = 0
currentCapacity = 1
}
} else {
currentFillCount += 1
}
}
maxFillCount += currentFillCount
currentFillCount = 0
currentCapacity = 0
}
return maxFillCount
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var waterLevel = Array(repeating: 0, count: grid[0].count)
for i in 0..<grid.count {
for j in 0..<grid[i].count {
waterLevel[j] += grid[i][j]
}
while waterLevel.max() != nil && waterLevel.max()! >= capacity {
waterLevel = waterLevel.map { $0 - capacity }
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var waterLevel = Array(repeating: 0, count: grid[0].count)
for i in 0..<grid.count {
for j in 0..<grid[i].count {
waterLevel[j] += grid[i][j]
}
while waterLevel.max() != nil && waterLevel.max()! >= capacity {
waterLevel = waterLevel.map { $0 - capacity }
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFill = 0
var currentFill = 0
for row in grid {
for well in row {
if well == 1 {
currentFill += 1
if currentFill == capacity {
maxFill += 1
currentFill = 0
}
}
}
}
return maxFill
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var maxFill = 0
var currentFill = 0
for row in grid {
for well in row {
if well == 1 {
currentFill += 1
if currentFill == capacity {
maxFill += 1
currentFill = 0
}
}
}
}
return maxFill
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = [Int]()
for row in grid {
for (index, well) in row.enumerated() {
if well == 1 {
wells.append(index)
}
}
}
wells.sort()
var i = 0
while i < wells.count {
var j = i
while j < wells.count && wells[j] - wells[i] < capacity {
j += 1
}
count += 1
i = j
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = [Int]()
for row in grid {
for (index, well) in row.enumerated() {
if well == 1 {
wells.append(index)
}
}
}
wells.sort()
var i = 0
while i < wells.count {
var j = i
while j < wells.count && wells[j] - wells[i] < capacity {
j += 1
}
count += 1
i = j
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var bucket = 0
for row in grid {
for i in 0..<row.count {
if row[i] == 1 {
bucket += 1
if bucket == capacity {
count += 1
bucket = 0
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var bucket = 0
for row in grid {
for i in 0..<row.count {
if row[i] == 1 {
bucket += 1
if bucket == capacity {
count += 1
bucket = 0
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
var bucket = capacity
while !wells.isEmpty {
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
bucket -= 1
if bucket == 0 {
count += 1
bucket = capacity
}
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
var bucket = capacity
while !wells.isEmpty {
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
bucket -= 1
if bucket == 0 {
count += 1
bucket = capacity
}
}
}
}
}
return count
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let ones1 = binary1.filter { $0 == "1" }.count
let ones2 = binary2.filter { $0 == "1" }.count
if ones1 == ones2 {
return $0 < $1
} else {
return ones1 < ones2
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let ones1 = binary1.filter { $0 == "1" }.count
let ones2 = binary2.filter { $0 == "1" }.count
if ones1 == ones2 {
return $0 < $1
} else {
return ones1 < ones2
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aCount = aBinary.filter { $0 == "1" }.count
let bCount = bBinary.filter { $0 == "1" }.count
return aCount == bCount ? a < b : aCount < bCount
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aCount = aBinary.filter { $0 == "1" }.count
let bCount = bBinary.filter { $0 == "1" }.count
return aCount == bCount ? a < b : aCount < bCount
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let ones1 = binary1.filter { $0 == "1" }.count
let ones2 = binary2.filter { $0 == "1" }.count
return ones1 < ones2 || (ones1 == ones2 && $0 < $1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let ones1 = binary1.filter { $0 == "1" }.count
let ones2 = binary2.filter { $0 == "1" }.count
return ones1 < ones2 || (ones1 == ones2 && $0 < $1)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let count1 = binary1.filter { $0 == "1" }.count
let count2 = binary2.filter { $0 == "1" }.count
return count1 == count2 ? $0 < $1 : count1 < count2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let count1 = binary1.filter { $0 == "1" }.count
let count2 = binary2.filter { $0 == "1" }.count
return count1 == count2 ? $0 < $1 : count1 < count2
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aCount = aBinary.filter { $0 == "1" }.count
let bCount = bBinary.filter { $0 == "1" }.count
return aCount == bCount ? a < b : aCount < bCount
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aCount = aBinary.filter { $0 == "1" }.count
let bCount = bBinary.filter { $0 == "1" }.count
return aCount == bCount ? a < b : aCount < bCount
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes == bOnes ? a < b : aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes == bOnes ? a < b : aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let count1 = binary1.filter { $0 == "1" }.count
let count2 = binary2.filter { $0 == "1" }.count
return count1 == count2 ? $0 < $1 : count1 < count2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let binary1 = String($0, radix: 2)
let binary2 = String($1, radix: 2)
let count1 = binary1.filter { $0 == "1" }.count
let count2 = binary2.filter { $0 == "1" }.count
return count1 == count2 ? $0 < $1 : count1 < count2
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
var result: [String] = []
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var result: [String] = []
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var words = s.split(separator: " ")
var result = [String]()
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var words = s.split(separator: " ")
var result = [String]()
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiouAEIOU"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let vowels = Set("aeiou")
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !vowels.contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = Set("aeiou")
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !vowels.contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char.lowercased()) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
var result = [String]()
let words = s.split(separator: " ")
for word in words {
var count = 0
for char in word {
if !vowels.contains(char.lowercased()) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.components(separatedBy: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.components(separatedBy: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var result = [String]()
let words = s.split(separator: " ")
for word in words {
let consonants = word.lowercased().filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) {
return String(wordArray[i])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) {
return String(wordArray[i])
}
}
return ""
}
```
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) {
return String(wordArray[index])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) {
return String(wordArray[index])
}
}
return ""
}
```
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
```
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) {
return String(wordArray[index])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) {
return String(wordArray[index])
}
}
return ""
}
```
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[index]) && !vowels.contains(wordArray[index - 1]) && !vowels.contains(wordArray[index + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) {
return String(wordArray[i])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) {
return String(wordArray[i])
}
}
return ""
}
```
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
if vowels.contains(wordArray[i]) && !vowels.contains(wordArray[i - 1]) && !vowels.contains(wordArray[i + 1]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
```
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[index])) && !vowels.contains(String(wordArray[index - 1])) && !vowels.contains(String(wordArray[index + 1])) {
return String(wordArray[index])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[index])) && !vowels.contains(String(wordArray[index - 1])) && !vowels.contains(String(wordArray[index + 1])) {
return String(wordArray[index])
}
}
return ""
}
```
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var closestVowel = ""
var foundVowel = false
for char in word {
if vowels.contains(char) {
closestVowel = String(char)
foundVowel = true
} else if foundVowel {
break
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var closestVowel = ""
var foundVowel = false
for char in word {
if vowels.contains(char) {
closestVowel = String(char)
foundVowel = true
} else if foundVowel {
break
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for i in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[i])) && !vowels.contains(String(wordArray[i - 1])) && !vowels.contains(String(wordArray[i + 1])) {
return String(wordArray[i])
}
}
return ""
}
```
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[index])) && !vowels.contains(String(wordArray[index - 1])) && !vowels.contains(String(wordArray[index + 1])) {
return String(wordArray[index])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let wordArray = Array(word)
for index in stride(from: wordArray.count - 2, through: 1, by: -1) {
if vowels.contains(String(wordArray[index])) && !vowels.contains(String(wordArray[index - 1])) && !vowels.contains(String(wordArray[index + 1])) {
return String(wordArray[index])
}
}
return ""
}
```
func matchParens(lst: [String]) -> String {
var openParens = 0
var closeParens = 0
for str in lst {
for char in str {
if char == "(" {
openParens += 1
} else {
closeParens += 1
}
}
}
return openParens == closeParens ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openParens = 0
var closeParens = 0
for str in lst {
for char in str {
if char == "(" {
openParens += 1
} else {
closeParens += 1
}
}
}
return openParens == closeParens ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for string in lst {
for char in string {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for string in lst {
for char in string {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
return stack.isEmpty ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst.joined() {
if char == "(" {
stack.append(char)
} else if let last = stack.last, last == "(" {
stack.removeLast()
} else {
return "No"
}
}
return stack.isEmpty ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst.joined() {
if char == "(" {
stack.append(char)
} else if let last = stack.last, last == "(" {
stack.removeLast()
} else {
return "No"
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for string in lst {
for char in string {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for string in lst {
for char in string {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for str in lst {
for char in str {
if char == "(" {
open += 1
} else {
close += 1
}
}
}
return open == close ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for str in lst {
for char in str {
if char == "(" {
open += 1
} else {
close += 1
}
}
}
return open == close ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty || stack.last! != "(" {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty || stack.last! != "(" {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty || stack.last! != "(" {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else {
if stack.isEmpty || stack.last! != "(" {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
return openCount == closeCount ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
return Array(arr.sorted(by: >)).prefix(k)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return Array(arr.sorted(by: >)).prefix(k)
}
```
return Array(arr.sorted(by: >)).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
```
var sortedArr = arr.sorted(by: >) // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
```
var sortedArr = arr.sorted(by: >) // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var arr = arr
arr.sort(by: >)
return Array(arr[0..<k])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var arr = arr
arr.sort(by: >)
return Array(arr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
var sortedArr = arr.sorted(by: >) // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var arr = arr
arr.sort(by: >)
return Array(arr.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var arr = arr
arr.sort(by: >)
return Array(arr.prefix(k))
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted()
return Array(sortedArr.dropFirst(sortedArr.count - k))
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
```
var sortedArr = arr.sorted(by: >) // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = String(arr[i])
if num.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let str = String(arr[i])
if str.count <= 2 {
sum += arr[i]
}
}
return sum
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var result = Set<Int>()
var num = n
while num != 1 {
if num % 2 != 0 {
result.insert(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
result.insert(1)
return Array(result).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = Set<Int>()
var num = n
while num != 1 {
if num % 2 != 0 {
result.insert(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
result.insert(1)
return Array(result).sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return Array(Set(collatz.filter { $0 % 2 != 0 }.sorted()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
collatz.append(current)
}
return Array(Set(collatz.filter { $0 % 2 != 0 }.sorted()))
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return Array(Set(collatz)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return Array(Set(collatz)).sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : 3 * num + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if let month = month, let day = day {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if let month = month, let day = day {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
}
return true
}
return false
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
let month = components?.month // type of expression is ambiguous without a type annotation
let day = components?.day // type of expression is ambiguous without a type annotation
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if let month = month, let day = day {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if let month = month, let day = day {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
}
return true
}
return false
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
let month = components?.month // type of expression is ambiguous without a type annotation
let day = components?.day // type of expression is ambiguous without a type annotation
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let day = components.day
let month = components.month
let year = components.year
if day == 0 || month == 0 || year == 0 {
return false
}
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day > 31 {
return false
}
case 4, 6, 9, 11:
if day > 30 {
return false
}
case 2:
if day > 29 {
return false
}
default:
return false
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let day = components.day
let month = components.month
let year = components.year
if day == 0 || month == 0 || year == 0 {
return false
}
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day > 31 {
return false
}
case 4, 6, 9, 11:
if day > 30 {
return false
}
case 2:
if day > 29 {
return false
}
default:
return false
}
return true
}
return false
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents(from: date)
let month = components?.month
let day = components?.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else {
if day == 31 {
return true
} else {
return false
}
}
} else {
return false
}
}
```
let components = dateFormatter.dateComponents(from: date) // value of type 'DateFormatter' has no member 'dateComponents'
let month = components?.month // type of expression is ambiguous without a type annotation
let day = components?.day // type of expression is ambiguous without a type annotation
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents([.month, .day, .year], from: date)
let month = components?.month
let day = components?.day
let year = components?.year
if month != nil && day != nil && year != nil {
let month = Int(month!)
let day = Int(day!)
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 && day > 29 {
return false
}
if (month == 4 || month == 6 || month == 9 || month == 11) && day > 30 {
return false
}
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.dateComponents([.month, .day, .year], from: date)
let month = components?.month
let day = components?.day
let year = components?.year
if month != nil && day != nil && year != nil {
let month = Int(month!)
let day = Int(day!)
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 && day > 29 {
return false
}
if (month == 4 || month == 6 || month == 9 || month == 11) && day > 30 {
return false
}
return true
}
}
return false
}
```
let components = dateFormatter.dateComponents([.month, .day, .year], from: date) // reference to member 'day' cannot be resolved without a contextual type
let components = dateFormatter.dateComponents([.month, .day, .year], from: date) // reference to member 'month' cannot be resolved without a contextual type
let components = dateFormatter.dateComponents([.month, .day, .year], from: date) // value of type 'DateFormatter' has no member 'dateComponents'
let components = dateFormatter.dateComponents([.month, .day, .year], from: date) // reference to member 'year' cannot be resolved without a contextual type
let month = components?.month // type of expression is ambiguous without a type annotation
let day = components?.day // type of expression is ambiguous without a type annotation
let year = components?.year // type of expression is ambiguous without a type annotation
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
let date = dateFormatter.date(from: date)
return date != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
let date = dateFormatter.date(from: date)
return date != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
let date = dateFormatter.date(from: date)
return date != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
let date = dateFormatter.date(from: date)
return date != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let parsedDate = dateFormatter.date(from: date) {
let calendar = Calendar.current
let components = calendar.dateComponents([.month, .day, .year], from: parsedDate)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else if month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12 {
if day == 31 {
return true
} else {
return false
}
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let parsedDate = dateFormatter.date(from: date) {
let calendar = Calendar.current
let components = calendar.dateComponents([.month, .day, .year], from: parsedDate)
let month = components.month
let day = components.day
if month == 2 {
if day == 29 {
return true
} else {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day == 30 {
return true
} else {
return false
}
} else if month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12 {
if day == 31 {
return true
} else {
return false
}
} else {
return false
}
} else {
return false
}
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: " ")
if words.count > 1 {
return .success(words)
}
let wordsByComma = txt.components(separatedBy: ",")
if wordsByComma.count > 1 {
return .success(wordsByComma)
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { (Int($0.asciiValue!) - Int(Character("a").asciiValue!) + 1) % 2 == 1 }
return .failure(oddLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: " ")
if words.count > 1 {
return .success(words)
}
let wordsByComma = txt.components(separatedBy: ",")
if wordsByComma.count > 1 {
return .success(wordsByComma)
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { (Int($0.asciiValue!) - Int(Character("a").asciiValue!) + 1) % 2 == 1 }
return .failure(oddLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { (Int($0.asciiValue!) - 97) % 2 != 0 }.count
return .failure(oddCount)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { (Int($0.asciiValue!) - 97) % 2 != 0 }.count
return .failure(oddCount)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(letters)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.unicodeScalars.first?.value)! % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.unicodeScalars.first?.value)! % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(letters)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsByComma = txt.split(separator: ",")
if wordsByComma.count > 1 {
return .success(Array(wordsByComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { Int($0.asciiValue!) % 2 == 1 }.count
return .failure(oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsByComma = txt.split(separator: ",")
if wordsByComma.count > 1 {
return .success(Array(wordsByComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { Int($0.asciiValue!) % 2 == 1 }.count
return .failure(oddCount)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(wordsByComma)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { (Int($0.asciiValue!) - Int(Character("a").asciiValue!) + 1) % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(letters)
}
} else {
return .success(words)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { (Int($0.asciiValue!) - Int(Character("a").asciiValue!) + 1) % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(letters)
}
} else {
return .success(words)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(letters) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsComma = txt.split(separator: ",")
if wordsComma.count > 1 {
return .success(Array(wordsComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { Int($0.asciiValue!) % 2 == 1 }.count
return .failure(oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsComma = txt.split(separator: ",")
if wordsComma.count > 1 {
return .success(Array(wordsComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { Int($0.asciiValue!) % 2 == 1 }.count
return .failure(oddCount)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(wordsComma)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: " ")
if words.count > 1 {
return .success(words)
}
let wordsByComma = txt.components(separatedBy: ",")
if wordsByComma.count > 1 {
return .success(wordsByComma)
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }
return .failure(oddLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: " ")
if words.count > 1 {
return .success(words)
}
let wordsByComma = txt.components(separatedBy: ",")
if wordsByComma.count > 1 {
return .success(wordsByComma)
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }
return .failure(oddLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 } // value of optional type 'UInt8?' must be unwrapped to a value of type 'UInt8'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
} else {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }
return .failure(oddLetters.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
} else {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }
return .failure(oddLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
let oddLetters = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 } // value of optional type 'UInt8?' must be unwrapped to a value of type 'UInt8'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count
return .failure(oddCount)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count == 1 {
let letters = txt.split(separator: ",")
if letters.count == 1 {
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count
return .failure(oddCount)
} else {
return .success(Array(letters))
}
} else {
return .success(Array(words))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count // value of optional type 'UInt8?' must be unwrapped to a value of type 'UInt8'
return .success(Array(letters)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsComma = txt.split(separator: ",")
if wordsComma.count > 1 {
return .success(Array(wordsComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count
return .failure(oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(Array(words))
}
let wordsComma = txt.split(separator: ",")
if wordsComma.count > 1 {
return .success(Array(wordsComma))
}
let lowerCaseLetters = txt.lowercased().filter { $0.isLowercase }
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count
return .failure(oddCount)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(Array(words)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(Array(wordsComma)) // cannot convert value of type 'Array<String.SubSequence>' (aka 'Array<Substring>') to expected argument type '[String]'
let oddCount = lowerCaseLetters.filter { ($0.asciiValue - 97) % 2 == 1 }.count // value of optional type 'UInt8?' must be unwrapped to a value of type 'UInt8'
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
for i in 0..<lst.count {
if lst[i] != sorted[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
for i in 0..<lst.count {
if lst[i] != sorted[i] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var set = Set<Int>()
for i in 0..<lst.count {
if set.contains(lst[i]) {
return false
}
set.insert(lst[i])
}
return lst == lst.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var set = Set<Int>()
for i in 0..<lst.count {
if set.contains(lst[i]) {
return false
}
set.insert(lst[i])
}
return lst == lst.sorted()
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sortedLst = lst
sortedLst.sort()
return sortedLst == lst
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sortedLst = lst
sortedLst.sort()
return sortedLst == lst
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
var duplicates = [Int: Int]()
for num in sorted {
if duplicates[num] != nil {
duplicates[num] = 2
} else {
duplicates[num] = 1
}
}
for (key, value) in duplicates {
if value > 1 {
return false
}
}
return sorted == lst
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
var duplicates = [Int: Int]()
for num in sorted {
if duplicates[num] != nil {
duplicates[num] = 2
} else {
duplicates[num] = 1
}
}
for (key, value) in duplicates {
if value > 1 {
return false
}
}
return sorted == lst
}
```
for (key, value) in duplicates { // immutable value 'key' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var set = Set<Int>()
for i in 0..<lst.count {
if set.contains(lst[i]) {
return false
} else {
set.insert(lst[i])
}
}
return lst == lst.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var set = Set<Int>()
for i in 0..<lst.count {
if set.contains(lst[i]) {
return false
} else {
set.insert(lst[i])
}
}
return lst == lst.sorted()
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && lst.count == Set(lst).count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && lst.count == Set(lst).count
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && Set(lst).count == lst.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && Set(lst).count == lst.count
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sortedLst = lst
sortedLst.sort()
return sortedLst == lst && lst.count == Set(lst).count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sortedLst = lst
sortedLst.sort()
return sortedLst == lst && lst.count == Set(lst).count
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && lst.count == Set(lst).count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var sorted = lst
sorted.sort()
return sorted == lst && lst.count == Set(lst).count
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num.sign
sum += abs(num)
}
return product * sum
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num.sign
}
return sum * product
}
```
product *= num.sign // value of type 'Int' has no member 'sign'
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var currentPath = [Int]()
var directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ row: Int, _ col: Int) {
if currentPath.count == k {
minPath = min(minPath, currentPath)
return
}
for (dx, dy) in directions {
let newRow = row + dx
let newCol = col + dy
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid.count && !visited[newRow][newCol] {
visited[newRow][newCol] = true
currentPath.append(grid[newRow][newCol])
dfs(newRow, newCol)
visited[newRow][newCol] = false
currentPath.removeLast()
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
currentPath.append(grid[i][j])
dfs(i, j)
visited[i][j] = false
currentPath.removeLast()
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var currentPath = [Int]()
var directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ row: Int, _ col: Int) {
if currentPath.count == k {
minPath = min(minPath, currentPath)
return
}
for (dx, dy) in directions {
let newRow = row + dx
let newCol = col + dy
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid.count && !visited[newRow][newCol] {
visited[newRow][newCol] = true
currentPath.append(grid[newRow][newCol])
dfs(newRow, newCol)
visited[newRow][newCol] = false
currentPath.removeLast()
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
currentPath.append(grid[i][j])
dfs(i, j)
visited[i][j] = false
currentPath.removeLast()
}
}
return minPath
}
```
minPath = min(minPath, currentPath) // global function 'min' requires that '[Int]' conform to 'Comparable'
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var path = [Int]()
func dfs(_ x: Int, _ y: Int, _ k: Int) {
if k == 0 {
if path < minPath {
minPath = path
}
return
}
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
path.append(grid[nx][ny])
dfs(nx, ny, k - 1)
path.removeLast()
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
path.append(grid[i][j])
dfs(i, j, k - 1)
path.removeLast()
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var path = [Int]()
func dfs(_ x: Int, _ y: Int, _ k: Int) {
if k == 0 {
if path < minPath {
minPath = path
}
return
}
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
path.append(grid[nx][ny])
dfs(nx, ny, k - 1)
path.removeLast()
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
path.append(grid[i][j])
dfs(i, j, k - 1)
path.removeLast()
visited[i][j] = false
}
}
return minPath
}
```
if path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var minPath = Array(repeating: Int.max, count: k)
var path = [Int]()
func dfs(x: Int, y: Int, k: Int) {
if k == 0 {
if path < minPath {
minPath = path
}
return
}
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
path.append(grid[nx][ny])
dfs(x: nx, y: ny, k: k - 1)
path.removeLast()
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
path.append(grid[i][j])
dfs(x: i, y: j, k: k - 1)
path.removeLast()
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var minPath = Array(repeating: Int.max, count: k)
var path = [Int]()
func dfs(x: Int, y: Int, k: Int) {
if k == 0 {
if path < minPath {
minPath = path
}
return
}
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
path.append(grid[nx][ny])
dfs(x: nx, y: ny, k: k - 1)
path.removeLast()
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
path.append(grid[i][j])
dfs(x: i, y: j, k: k - 1)
path.removeLast()
visited[i][j] = false
}
}
return minPath
}
```
if path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
func dfs(x: Int, y: Int, path: [Int]) {
if path.count == k {
minPath = min(minPath, path)
return
}
visited[x][y] = true
let dx = [-1, 0, 1, 0]
let dy = [0, 1, 0, -1]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
dfs(x: nx, y: ny, path: path + [grid[nx][ny]])
}
}
visited[x][y] = false
}
for i in 0..<grid.count {
for j in 0..<grid.count {
dfs(x: i, y: j, path: [grid[i][j]])
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int](repeating: Int.max, count: k)
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
func dfs(x: Int, y: Int, path: [Int]) {
if path.count == k {
minPath = min(minPath, path)
return
}
visited[x][y] = true
let dx = [-1, 0, 1, 0]
let dy = [0, 1, 0, -1]
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
dfs(x: nx, y: ny, path: path + [grid[nx][ny]])
}
}
visited[x][y] = false
}
for i in 0..<grid.count {
for j in 0..<grid.count {
dfs(x: i, y: j, path: [grid[i][j]])
}
}
return minPath
}
```
minPath = min(minPath, path) // global function 'min' requires that '[Int]' conform to 'Comparable'
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = Array(repeating: Int.max, count: k)
func dfs(x: Int, y: Int, path: [Int], k: Int) {
if k == 0 {
minPath = min(minPath, path)
return
}
if x < 0 || x >= n || y < 0 || y >= n || visited[x][y] {
return
}
visited[x][y] = true
dfs(x: x + 1, y: y, path: path + [grid[x][y]], k: k - 1)
dfs(x: x - 1, y: y, path: path + [grid[x][y]], k: k - 1)
dfs(x: x, y: y + 1, path: path + [grid[x][y]], k: k - 1)
dfs(x: x, y: y - 1, path: path + [grid[x][y]], k: k - 1)
visited[x][y] = false
}
for i in 0..<n {
for j in 0..<n {
dfs(x: i, y: j, path: [], k: k)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = Array(repeating: Int.max, count: k)
func dfs(x: Int, y: Int, path: [Int], k: Int) {
if k == 0 {
minPath = min(minPath, path)
return
}
if x < 0 || x >= n || y < 0 || y >= n || visited[x][y] {
return
}
visited[x][y] = true
dfs(x: x + 1, y: y, path: path + [grid[x][y]], k: k - 1)
dfs(x: x - 1, y: y, path: path + [grid[x][y]], k: k - 1)
dfs(x: x, y: y + 1, path: path + [grid[x][y]], k: k - 1)
dfs(x: x, y: y - 1, path: path + [grid[x][y]], k: k - 1)
visited[x][y] = false
}
for i in 0..<n {
for j in 0..<n {
dfs(x: i, y: j, path: [], k: k)
}
}
return minPath
}
```
minPath = min(minPath, path) // global function 'min' requires that '[Int]' conform to 'Comparable'
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
let n = grid.count
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2 < $1.2 }
let (x, y, path) = queue.removeFirst()
if visited.contains((x, y)) {
continue
}
visited.insert((x, y))
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
}
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < n && ny >= 0 && ny < n {
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let dx = [0, 1, 0, -1]
let dy = [1, 0, -1, 0]
let n = grid.count
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2 < $1.2 }
let (x, y, path) = queue.removeFirst()
if visited.contains((x, y)) {
continue
}
visited.insert((x, y))
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
}
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < n && ny >= 0 && ny < n {
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
```
var visited = Set<(Int, Int)>() // type '(Int, Int)' does not conform to protocol 'Hashable'
queue.sort { $0.2 < $1.2 } // binary operator '<' cannot be applied to two '[Int]' operands
if minPath.isEmpty || path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let dx = [-1, 0, 1, 0]
let dy = [0, 1, 0, -1]
for i in 0..<grid.count {
for j in 0..<grid[i].count {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2 < $1.2 }
let (x, y, path) = queue.removeFirst()
if visited.contains((x, y)) {
continue
}
visited.insert((x, y))
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
}
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid[nx].count {
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let dx = [-1, 0, 1, 0]
let dy = [0, 1, 0, -1]
for i in 0..<grid.count {
for j in 0..<grid[i].count {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2 < $1.2 }
let (x, y, path) = queue.removeFirst()
if visited.contains((x, y)) {
continue
}
visited.insert((x, y))
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
}
for i in 0..<4 {
let nx = x + dx[i]
let ny = y + dy[i]
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid[nx].count {
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
```
var visited = Set<(Int, Int)>() // type '(Int, Int)' does not conform to protocol 'Hashable'
queue.sort { $0.2 < $1.2 } // binary operator '<' cannot be applied to two '[Int]' operands
if minPath.isEmpty || path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var currentPath = [Int]()
var minPathValues = [Int]()
func dfs(row: Int, col: Int) {
if currentPath.count == k {
if minPath.isEmpty || currentPath < minPath {
minPath = currentPath
minPathValues = currentPath.map { grid[$0/grid.count][$0%grid.count] }
}
return
}
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let newRow = row + dx
let newCol = col + dy
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid.count && !visited[newRow][newCol] {
visited[newRow][newCol] = true
currentPath.append(newRow * grid.count + newCol)
dfs(row: newRow, col: newCol)
visited[newRow][newCol] = false
currentPath.removeLast()
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
currentPath.append(i * grid.count + j)
dfs(row: i, col: j)
visited[i][j] = false
currentPath.removeLast()
}
}
return minPathValues
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var currentPath = [Int]()
var minPathValues = [Int]()
func dfs(row: Int, col: Int) {
if currentPath.count == k {
if minPath.isEmpty || currentPath < minPath {
minPath = currentPath
minPathValues = currentPath.map { grid[$0/grid.count][$0%grid.count] }
}
return
}
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let newRow = row + dx
let newCol = col + dy
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid.count && !visited[newRow][newCol] {
visited[newRow][newCol] = true
currentPath.append(newRow * grid.count + newCol)
dfs(row: newRow, col: newCol)
visited[newRow][newCol] = false
currentPath.removeLast()
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
currentPath.append(i * grid.count + j)
dfs(row: i, col: j)
visited[i][j] = false
currentPath.removeLast()
}
}
return minPathValues
}
```
if minPath.isEmpty || currentPath < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(x: Int, y: Int, path: [Int]) {
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
return
}
for direction in directions {
let newX = x + direction.0
let newY = y + direction.1
if newX >= 0 && newX < grid.count && newY >= 0 && newY < grid.count && !visited[newX][newY] {
visited[newX][newY] = true
dfs(x: newX, y: newY, path: path + [grid[newX][newY]])
visited[newX][newY] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
dfs(x: i, y: j, path: [grid[i][j]])
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
var directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(x: Int, y: Int, path: [Int]) {
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
return
}
for direction in directions {
let newX = x + direction.0
let newY = y + direction.1
if newX >= 0 && newX < grid.count && newY >= 0 && newY < grid.count && !visited[newX][newY] {
visited[newX][newY] = true
dfs(x: newX, y: newY, path: path + [grid[newX][newY]])
visited[newX][newY] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
dfs(x: i, y: j, path: [grid[i][j]])
visited[i][j] = false
}
}
return minPath
}
```
if minPath.isEmpty || path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
let n = grid.count
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2.count < $1.2.count || ($0.2.count == $1.2.count && $0.2 < $1.2) }
let (x, y, path) = queue.removeFirst()
if path.count == k {
return path
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited.contains((nx, ny)) {
visited.insert((nx, ny))
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var visited = Set<(Int, Int)>()
var queue = [(Int, Int, [Int])]()
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
let n = grid.count
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]]))
}
}
while !queue.isEmpty {
queue.sort { $0.2.count < $1.2.count || ($0.2.count == $1.2.count && $0.2 < $1.2) }
let (x, y, path) = queue.removeFirst()
if path.count == k {
return path
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited.contains((nx, ny)) {
visited.insert((nx, ny))
queue.append((nx, ny, path + [grid[nx][ny]]))
}
}
}
return minPath
}
```
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0...n {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0...n {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int](repeating: 0, count: n + 1)
sequence[0] = 3
sequence[1] = 1
sequence[2] = 2
for i in 3...n {
if i % 2 == 0 {
sequence[i] = 1 + i / 2
} else {
sequence[i] = sequence[i - 1] + sequence[i - 2] + sequence[i + 1]
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int](repeating: 0, count: n + 1)
sequence[0] = 3
sequence[1] = 1
sequence[2] = 2
for i in 3...n {
if i % 2 == 0 {
sequence[i] = 1 + i / 2
} else {
sequence[i] = sequence[i - 1] + sequence[i - 2] + sequence[i + 1]
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var tribonacci = [0, 3, 1]
for i in 3...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var tribonacci = [0, 3, 1]
for i in 3...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0..<n+1 {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0..<n+1 {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var tribonacci = [Int](repeating: 0, count: n + 1)
tribonacci[0] = 3
if n > 0 {
tribonacci[1] = 1
}
if n > 1 {
tribonacci[2] = 2
}
for i in 3...n {
if i % 2 == 0 {
tribonacci[i] = 1 + i / 2
} else {
tribonacci[i] = tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1]
}
}
return tribonacci
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var tribonacci = [Int](repeating: 0, count: n + 1)
tribonacci[0] = 3
if n > 0 {
tribonacci[1] = 1
}
if n > 1 {
tribonacci[2] = 2
}
for i in 3...n {
if i % 2 == 0 {
tribonacci[i] = 1 + i / 2
} else {
tribonacci[i] = tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1]
}
}
return tribonacci
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(3)
for i in 1...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0...n {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
for i in 0...n {
if i == 0 {
sequence.append(3)
} else if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(1)
sequence.append(3)
sequence.append(2)
for i in 3..<n+1 {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i - 3])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [Int]()
sequence.append(1)
sequence.append(3)
sequence.append(2)
for i in 3..<n+1 {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i - 3])
}
}
return sequence
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var n = n
while n > 0 {
let digit = n % 10
if digit % 2 != 0 {
product *= digit
}
n /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
let digits = Array(String(n))
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 != 0 {
product *= intDigit
}
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
let digits = Array(String(n))
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 != 0 {
product *= intDigit
}
}
return product
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty || stack.last != "[" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty || stack.last != "[" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty || stack.last != "[" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty || stack.last != "[" {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
if let previousChar = trimmedText.index(trimmedText.startIndex, offsetBy: -1), trimmedText[previousChar].isLetter {
return false
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
if let previousChar = trimmedText.index(trimmedText.startIndex, offsetBy: -1), trimmedText[previousChar].isLetter {
return false
}
return true
}
return false
}
```
if let previousChar = trimmedText.index(trimmedText.startIndex, offsetBy: -1), trimmedText[previousChar].isLetter { // initializer for conditional binding must have Optional type, not 'String.Index'
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespaces)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespaces)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
guard !trimmedText.isEmpty else { return false }
let lastChar = trimmedText.last
guard let lastChar = lastChar else { return false }
return lastChar.isLetter
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
guard !trimmedText.isEmpty else { return false }
let lastChar = trimmedText.last
guard let lastChar = lastChar else { return false }
return lastChar.isLetter
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if let lastChar = trimmedTxt.last, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if let lastChar = trimmedTxt.last, lastChar.isLetter {
let index = trimmedTxt.index(trimmedTxt.startIndex, offsetBy: trimmedTxt.count - 1)
if trimmedTxt.index(after: index) == trimmedTxt.endIndex {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = txt.index(txt.endIndex, offsetBy: -1)
let isLastCharPartOfWord = txt.index(txt.startIndex, offsetBy: 1)..<index
let substring = txt[isLastCharPartOfWord]
if substring.contains(" ") {
return false
} else {
return true
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = txt.index(txt.endIndex, offsetBy: -1)
let isLastCharPartOfWord = txt.index(txt.startIndex, offsetBy: 1)..<index
let substring = txt[isLastCharPartOfWord]
if substring.contains(" ") {
return false
} else {
return true
}
} else {
return false
}
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar {
return lastChar.isLetter && !trimmedTxt.contains(lastChar)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedTxt = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedTxt.isEmpty {
return false
}
let lastChar = trimmedTxt.last
if let lastChar = lastChar {
return lastChar.isLetter && !trimmedTxt.contains(lastChar)
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = txt.index(txt.startIndex, offsetBy: txt.count - 1)
if txt.index(after: index) == txt.endIndex {
return true
}
let nextChar = txt[txt.index(after: index)]
if nextChar.isLetter {
return false
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let index = txt.index(txt.startIndex, offsetBy: txt.count - 1)
if txt.index(after: index) == txt.endIndex {
return true
}
let nextChar = txt[txt.index(after: index)]
if nextChar.isLetter {
return false
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedText.index(trimmedText.startIndex, offsetBy: trimmedText.count - 1)
if trimmedText.index(after: index) == trimmedText.endIndex {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedText.index(trimmedText.startIndex, offsetBy: trimmedText.count - 1)
if trimmedText.index(after: index) == trimmedText.endIndex {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedText.index(trimmedText.startIndex, offsetBy: trimmedText.count - 1)
if trimmedText.index(after: index) == trimmedText.endIndex {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let trimmedText = txt.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedText.isEmpty {
return false
}
let lastChar = trimmedText.last
if let lastChar = lastChar, lastChar.isLetter {
let index = trimmedText.index(trimmedText.startIndex, offsetBy: trimmedText.count - 1)
if trimmedText.index(after: index) == trimmedText.endIndex {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargestNegative = largestNegative {
if num > currentLargestNegative {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallestPositive = smallestPositive {
if num < currentSmallestPositive {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargestNegative = largestNegative {
if num > currentLargestNegative {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallestPositive = smallestPositive {
if num < currentSmallestPositive {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let largest = largestNegative {
if num > largest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
if num < smallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let largest = largestNegative {
if num > largest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
if num < smallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
if num > currentLargest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
if num < currentSmallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b == a ? nil : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b == a ? nil : b
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? a : b == a ? nil : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b == a ? nil : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b == a ? nil : b
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? a : b == a ? nil : b
default:
return nil
}
}
```
return a > b ? a : b == a ? nil : b // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : b == a ? nil : b // cannot convert return expression of type 'Double?' to return type 'Value?'
return a > b ? a : b == a ? nil : b // cannot convert return expression of type 'Double?' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b == a ? nil : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b == a ? nil : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : bDouble == aDouble ? nil : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b == a ? nil : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b == a ? nil : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : bDouble == aDouble ? nil : b
default:
return nil
}
}
```
return a > b ? a : b == a ? nil : b // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : b == a ? nil : b // cannot convert return expression of type 'Double?' to return type 'Value?'
return aDouble > bDouble ? a : bDouble == aDouble ? nil : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : bDouble == aDouble ? nil : b // cannot convert return expression of type 'String?' to return type 'Value?'
return aDouble > bDouble ? a : bDouble == aDouble ? nil : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (a, b) as (Value.intValue, Value.intValue):
return a.rawValue > b.rawValue ? a : b
case let (a, b) as (Value.doubleValue, Value.doubleValue):
return a.rawValue > b.rawValue ? a : b
case let (a, b) as (Value.stringValue, Value.stringValue):
let aValue = Double(a.rawValue.replacingOccurrences(of: ",", with: ".")) ?? 0
let bValue = Double(b.rawValue.replacingOccurrences(of: ",", with: ".")) ?? 0
return aValue > bValue ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (a, b) as (Value.intValue, Value.intValue):
return a.rawValue > b.rawValue ? a : b
case let (a, b) as (Value.doubleValue, Value.doubleValue):
return a.rawValue > b.rawValue ? a : b
case let (a, b) as (Value.stringValue, Value.stringValue):
let aValue = Double(a.rawValue.replacingOccurrences(of: ",", with: ".")) ?? 0
let bValue = Double(b.rawValue.replacingOccurrences(of: ",", with: ".")) ?? 0
return aValue > bValue ? a : b
default:
return nil
}
}
```
case let (a, b) as (Value.intValue, Value.intValue): // enum case 'intValue' is not a member type of 'Value'
case let (a, b) as (Value.intValue, Value.intValue): // enum case 'intValue' is not a member type of 'Value'
case let (a, b) as (Value.doubleValue, Value.doubleValue): // enum case 'doubleValue' is not a member type of 'Value'
case let (a, b) as (Value.doubleValue, Value.doubleValue): // enum case 'doubleValue' is not a member type of 'Value'
case let (a, b) as (Value.stringValue, Value.stringValue): // enum case 'stringValue' is not a member type of 'Value'
case let (a, b) as (Value.stringValue, Value.stringValue): // enum case 'stringValue' is not a member type of 'Value'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : (aDouble == bDouble ? nil : b)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : (aDouble == bDouble ? nil : b)
default:
return nil
}
}
```
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Double?' to return type 'Value?'
return aDouble > bDouble ? a : (aDouble == bDouble ? nil : b) // cannot convert return expression of type 'String?' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return aDouble > bDouble ? a : b // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
if half % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
if half % 2 == 0 {
return true
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
return n >= 8
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
return n >= 8
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
if half % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
if half % 2 == 0 {
return true
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
return half % 2 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
return half % 2 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
return half % 2 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
let half = n / 2
return half % 2 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
if n % 2 == 0 {
return true
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
return n % 2 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
return n % 2 == 0
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
var factorial = 1
for j in 1...i {
factorial *= j
}
result *= factorial
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
} else if spaceCount > 1 {
result.append("_")
}
result.append(char)
spaceCount = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
} else if spaceCount > 1 {
result.append("_")
}
result.append(char)
spaceCount = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
} else if spaceCount > 1 {
result.append("_")
}
result.append(char)
spaceCount = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
} else if spaceCount > 1 {
result.append("_")
}
result.append(char)
spaceCount = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append(String(repeating: "_", count: spaceCount))
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append(String(repeating: "_", count: spaceCount))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append(String(repeating: "_", count: spaceCount))
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append(String(repeating: "_", count: spaceCount))
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append("_")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append("_")
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result.append("_")
} else if spaceCount == 2 {
result.append("-")
}
} else {
spaceCount = 0
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
spaceCount = 0
} else if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
result.append("-")
} else {
result.append("_")
}
} else {
if spaceCount > 2 {
result.append("-")
spaceCount = 0
} else if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append("_")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 2 {
result.append("-")
spaceCount = 0
}
} else {
if spaceCount > 0 {
result.append("_")
spaceCount = 0
}
result.append(char)
}
}
if spaceCount > 0 {
result.append("_")
}
return result
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.first?.isLetter { // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.split(separator: ".")
if fileNameComponents.count != 2 {
return "No"
}
let name = fileNameComponents[0]
let extension = fileNameComponents[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.split(separator: ".")
if fileNameComponents.count != 2 {
return "No"
}
let name = fileNameComponents[0]
let extension = fileNameComponents[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
```
let extension = fileNameComponents[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.first?.isLetter { // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let validExtensions = ["txt", "exe", "dll"]
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count > 0 else { return "No" }
guard let _ = Int(name) else { return "No" }
guard name.first?.isLetter else { return "No" }
guard validExtensions.contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let validExtensions = ["txt", "exe", "dll"]
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count > 0 else { return "No" }
guard let _ = Int(name) else { return "No" }
guard name.first?.isLetter else { return "No" }
guard validExtensions.contains(extension) else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard name.first?.isLetter else { return "No" } // optional type 'Bool?' cannot be used as a boolean; test for '!= nil' instead
guard validExtensions.contains(extension) else { return "No" } // declaration is only valid at file scope
guard validExtensions.contains(extension) else { return "No" } // expected expression in list of expressions
guard validExtensions.contains(extension) else { return "No" } // expected '{' in extension
guard validExtensions.contains(extension) else { return "No" } // missing argument for parameter 'where' in call
guard validExtensions.contains(extension) else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count == name.rangeOfCharacter(from: .letters) else { return "No" }
guard name.rangeOfCharacter(from: .decimalDigits) == nil else { return "No" }
guard name.rangeOfCharacter(from: .decimalDigits) == nil else { return "No" }
guard name.count <= 3 else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count == name.rangeOfCharacter(from: .letters) else { return "No" }
guard name.rangeOfCharacter(from: .decimalDigits) == nil else { return "No" }
guard name.rangeOfCharacter(from: .decimalDigits) == nil else { return "No" }
guard name.count <= 3 else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard name.count == name.rangeOfCharacter(from: .letters) else { return "No" } // cannot convert value of type 'Range<Substring.Index>?' (aka 'Optional<Range<String.Index>>') to expected argument type 'Int'
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count > 0 else { return "No" }
guard let _ = Int(name) else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count > 0 else { return "No" }
guard let _ = Int(name) else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard name.first?.isLetter else { return "No" } // optional type 'Bool?' cannot be used as a boolean; test for '!= nil' instead
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.split(separator: ".")
guard fileNameComponents.count == 2 else { return "No" }
let name = fileNameComponents[0]
let extension = fileNameComponents[1]
guard name.count == name.range(of: "0123456789")?.count else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.split(separator: ".")
guard fileNameComponents.count == 2 else { return "No" }
let name = fileNameComponents[0]
let extension = fileNameComponents[1]
guard name.count == name.range(of: "0123456789")?.count else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
```
let extension = fileNameComponents[1] // keyword 'extension' cannot be used as an identifier here
guard name.count == name.range(of: "0123456789")?.count else { return "No" } // referencing property 'count' on 'Range' requires that 'Substring.Index' (aka 'String.Index') conform to 'Strideable'
guard name.count == name.range(of: "0123456789")?.count else { return "No" } // referencing property 'count' on 'Range' requires that 'Substring.Index.Stride' conform to 'SignedInteger'
guard name.first?.isLetter else { return "No" } // optional type 'Bool?' cannot be used as a boolean; test for '!= nil' instead
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
let digitCount = name.filter { $0.isNumber }.count
if digitCount > 3 {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.first?.isLetter { // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
let digitCount = name.filter { $0.isNumber }.count
guard digitCount <= 3 else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
let digitCount = name.filter { $0.isNumber }.count
guard digitCount <= 3 else { return "No" }
guard name.first?.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard name.first?.isLetter else { return "No" } // optional type 'Bool?' cannot be used as a boolean; test for '!= nil' instead
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count == name.rangeOfCharacter(from: CharacterSet.decimalDigits) else { return "No" }
guard name.count <= 3 else { return "No" }
guard let firstChar = name.first, firstChar.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard name.count == name.rangeOfCharacter(from: CharacterSet.decimalDigits) else { return "No" }
guard name.count <= 3 else { return "No" }
guard let firstChar = name.first, firstChar.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard name.count == name.rangeOfCharacter(from: CharacterSet.decimalDigits) else { return "No" } // cannot convert value of type 'Range<Substring.Index>?' (aka 'Optional<Range<String.Index>>') to expected argument type 'Int'
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
if name.filter({ $0.isNumber }).count > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.first?.isLetter {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
if name.filter({ $0.isNumber }).count > 3 {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.first?.isLetter { // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var primeWords = [String]()
for word in words {
if isPrime(word.count) {
primeWords.append(word)
}
}
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWholeNumber
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Double' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])
let xDenominator = Int(xParts[1])
let nNumerator = Int(nParts[0])
let nDenominator = Int(nParts[1])
let result = Double(xNumerator!) / Double(xDenominator!) * Double(nNumerator!) / Double(nDenominator!)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])
let xDenominator = Int(xParts[1])
let nNumerator = Int(nParts[0])
let nDenominator = Int(nParts[1])
let result = Double(xNumerator!) / Double(xDenominator!) * Double(nNumerator!) / Double(nDenominator!)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWholeNumber
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]), let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]), let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Double' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
let xNumerator = Int(xComponents[0])
let xDenominator = Int(xComponents[1])
let nNumerator = Int(nComponents[0])
let nDenominator = Int(nComponents[1])
let result = (xNumerator * nNumerator) % (xDenominator * nDenominator)
return result == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
let xNumerator = Int(xComponents[0])
let xDenominator = Int(xComponents[1])
let nNumerator = Int(nComponents[0])
let nDenominator = Int(nComponents[1])
let result = (xNumerator * nNumerator) % (xDenominator * nDenominator)
return result == 0
}
```
let result = (xNumerator * nNumerator) % (xDenominator * nDenominator) // binary operator '*' cannot be applied to two 'Int?' operands
let result = (xNumerator * nNumerator) % (xDenominator * nDenominator) // binary operator '*' cannot be applied to two 'Int?' operands
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.split(separator: "/")
let nComponents = n.split(separator: "/")
guard let xNumerator = Int(xComponents[0]),
let xDenominator = Int(xComponents[1]),
let nNumerator = Int(nComponents[0]),
let nDenominator = Int(nComponents[1]) else {
return false
}
let result = Double(xNumerator * nNumerator) / Double(xDenominator * nDenominator)
return result.isWhole
}
```
return result.isWhole // value of type 'Double' has no member 'isWhole'
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aSum = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let bSum = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return aSum == bSum ? a < b : aSum < bSum
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aSum = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let bSum = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return aSum == bSum ? a < b : aSum < bSum
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA == sumB ? nums.firstIndex(of: a)! < nums.firstIndex(of: b)! : sumA < sumB
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA == sumB ? nums.firstIndex(of: a)! < nums.firstIndex(of: b)! : sumA < sumB
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aDigits = String(abs(a)).map { Int(String($0))! }
let bDigits = String(abs(b)).map { Int(String($0))! }
let aSum = aDigits.reduce(0, +)
let bSum = bDigits.reduce(0, +)
return aSum < bSum || (aSum == bSum && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aDigits = String(abs(a)).map { Int(String($0))! }
let bDigits = String(abs(b)).map { Int(String($0))! }
let aSum = aDigits.reduce(0, +)
let bSum = bDigits.reduce(0, +)
return aSum < bSum || (aSum == bSum && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumB = String(b).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumB = String(b).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumDigitsA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumDigitsB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumDigitsA == sumDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumDigitsA < sumDigitsB
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumDigitsA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumDigitsB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumDigitsA == sumDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumDigitsA < sumDigitsB
}
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String(abs($0)).reduce(0, { $0 + Int(String($1))! })
let sum2 = String(abs($1)).reduce(0, { $0 + Int(String($1))! })
if sum1 == sum2 {
return nums.firstIndex(of: $0)! < nums.firstIndex(of: $1)!
}
return sum1 < sum2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String(abs($0)).reduce(0, { $0 + Int(String($1))! })
let sum2 = String(abs($1)).reduce(0, { $0 + Int(String($1))! })
if sum1 == sum2 {
return nums.firstIndex(of: $0)! < nums.firstIndex(of: $1)!
}
return sum1 < sum2
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).map { Int(String($0))! }.reduce(0, +)
let sumB = String(abs(b)).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).map { Int(String($0))! }.reduce(0, +)
let sumB = String(abs(b)).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String(abs($0)).reduce(0, { $0 + Int(String($1))! })
let sum2 = String(abs($1)).reduce(0, { $0 + Int(String($1))! })
return sum1 == sum2 ? $0 < $1 : sum1 < sum2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String(abs($0)).reduce(0, { $0 + Int(String($1))! })
let sum2 = String(abs($1)).reduce(0, { $0 + Int(String($1))! })
return sum1 == sum2 ? $0 < $1 : sum1 < sum2
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && a < b)
}
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) {
if abs(num) > 10 && firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) {
if abs(num) > 10 && firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) { // value of optional type 'String.Element?' (aka 'Optional<Character>') must be unwrapped to a value of type 'String.Element' (aka 'Character')
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) { // value of optional type 'String.Element?' (aka 'Optional<Character>') must be unwrapped to a value of type 'String.Element' (aka 'Character')
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) {
if firstDigit % 2 == 1 && lastDigit % 2 == 1 && num > 10 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) {
if firstDigit % 2 == 1 && lastDigit % 2 == 1 && num > 10 {
count += 1
}
}
}
return count
}
```
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) { // value of optional type 'String.Element?' (aka 'Optional<Character>') must be unwrapped to a value of type 'String.Element' (aka 'Character')
if let firstDigit = Int(String(strNum.first)), let lastDigit = Int(String(strNum.last)) { // value of optional type 'String.Element?' (aka 'Optional<Character>') must be unwrapped to a value of type 'String.Element' (aka 'Character')
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let numString = String(num)
let firstDigit = Int(String(numString.first))
let lastDigit = Int(String(numString.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let numString = String(num)
let firstDigit = Int(String(numString.first))
let lastDigit = Int(String(numString.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
```
let firstDigit = Int(String(numString.first)) // no exact matches in call to initializer
let lastDigit = Int(String(numString.last)) // no exact matches in call to initializer
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first != nil && strNum.last != nil {
let firstDigit = Int(String(strNum.first!))
let lastDigit = Int(String(strNum.last!))
if firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first != nil && strNum.last != nil {
let firstDigit = Int(String(strNum.first!))
let lastDigit = Int(String(strNum.last!))
if firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
}
return count
}
```
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
let firstDigit = Int(String(strNum.first))
let lastDigit = Int(String(strNum.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
let firstDigit = Int(String(strNum.first))
let lastDigit = Int(String(strNum.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
```
let firstDigit = Int(String(strNum.first)) // no exact matches in call to initializer
let lastDigit = Int(String(strNum.last)) // no exact matches in call to initializer
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first != nil && strNum.last != nil {
let firstDigit = Int(String(strNum.first!))
let lastDigit = Int(String(strNum.last!))
if firstDigit != nil && lastDigit != nil {
if firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first != nil && strNum.last != nil {
let firstDigit = Int(String(strNum.first!))
let lastDigit = Int(String(strNum.last!))
if firstDigit != nil && lastDigit != nil {
if firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
}
}
return count
}
```
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9" {
if strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9" {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9" {
if strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9" {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
let firstDigit = Int(String(strNum.first))
let lastDigit = Int(String(strNum.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
let firstDigit = Int(String(strNum.first))
let lastDigit = Int(String(strNum.last))
if num > 10 && firstDigit != nil && lastDigit != nil && firstDigit! % 2 == 1 && lastDigit! % 2 == 1 {
count += 1
}
}
return count
}
```
let firstDigit = Int(String(strNum.first)) // no exact matches in call to initializer
let lastDigit = Int(String(strNum.last)) // no exact matches in call to initializer
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && (strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9") && (strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && (strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9") && (strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9") {
count += 1
}
}
return count
}
```
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && (strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9") && (strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
let strNum = String(num)
if num > 10 && (strNum.first == "1" || strNum.first == "3" || strNum.first == "5" || strNum.first == "7" || strNum.first == "9") && (strNum.last == "1" || strNum.last == "3" || strNum.last == "5" || strNum.last == "7" || strNum.last == "9") {
count += 1
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i + 1)..<n {
for k in (j + 1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i + 1)..<n {
for k in (j + 1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i+1)..<n {
for k in (j+1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i + 1)..<n {
for k in (j + 1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in (i + 1)..<n {
for k in (j + 1)..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
return evenLengthStrings.sorted { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
return evenLengthStrings.sorted { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
var evenLengthStrings = [String]()
for string in lst {
if string.count % 2 == 0 {
evenLengthStrings.append(string)
}
}
evenLengthStrings.sort { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
return evenLengthStrings
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var evenLengthStrings = [String]()
for string in lst {
if string.count % 2 == 0 {
evenLengthStrings.append(string)
}
}
evenLengthStrings.sort { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
return evenLengthStrings
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedStrings = evenLengthStrings.sorted { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return sortedStrings
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedStrings = evenLengthStrings.sorted { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return sortedStrings
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = lst.filter { $0.count % 2 == 0 }
result.sort { $0.count == $1.count ? $0 < $1 : $0.count < $1.count }
return result
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
return isPrime(n) ? x : y
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 { // value of type 'Double' has no member 'isWholeNumber'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num >= 0 && Int(num) == num && Int(num) % 2 == 1 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num >= 0 && Int(num) == num && Int(num) % 2 == 1 {
sum += Int(num * num)
}
}
return sum
}
```
if num >= 0 && Int(num) == num && Int(num) % 2 == 1 { // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num.isWholeNumber && num > 0 && Int(num) % 2 != 0 { // value of type 'Double' has no member 'isWholeNumber'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(pow(num, 2))
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.truncatingRemainder(dividingBy: 2) != 0 }.map { Int($0 * $0) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.truncatingRemainder(dividingBy: 2) != 0 }.map { Int($0 * $0) }.reduce(0, +)
}
```
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 >= 0 && Int($0) % 2 == 1 }.map { Int($0 * $0) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 >= 0 && Int($0) % 2 == 1 }.map { Int($0 * $0) }.reduce(0, +)
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(num * num)
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 >= 0 && $0 == Int($0) && Int($0) % 2 != 0 }.map { Int($0 * $0) }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 >= 0 && $0 == Int($0) && Int($0) % 2 != 0 }.map { Int($0 * $0) }.reduce(0, +)
}
```
return lst.filter { $0 >= 0 && $0 == Int($0) && Int($0) % 2 != 0 }.map { Int($0 * $0) }.reduce(0, +) // cannot convert value of type 'Double' to expected argument type 'Int'
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -1000000000
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -1000000000
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
for char in extension { // expected Sequence expression for for-each loop
for char in extension { // expected '{' to start the body of for-each loop
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Double.min
for extension in extensions {
let cap = extension.filter { $0.isUppercase }.count
let sm = extension.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Double.min
for extension in extensions {
let cap = extension.filter { $0.isUppercase }.count
let sm = extension.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength = Double.min // type 'Double' has no member 'min'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected pattern
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = extension.filter { $0.isUppercase }.count // expected initial value after '='
let cap = extension.filter { $0.isUppercase }.count // expected '{' in extension
let cap = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let cap = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let cap = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let sm = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let sm = extension.filter { $0.isLowercase }.count // expected initial value after '='
let sm = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let sm = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let sm = extension.filter { $0.isLowercase }.count // expected '{' in extension
let strength = Double(cap - sm) // no exact matches in call to initializer
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // expected '{' in extension
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var maxStrength = Double.min
var strongestExtension = ""
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > maxStrength {
maxStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var maxStrength = Double.min
var strongestExtension = ""
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > maxStrength {
maxStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var maxStrength = Double.min // type 'Double' has no member 'min'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let capCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let capCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let capCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let capCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let capCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let smCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let smCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let smCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let smCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.min
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.min
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength: Double = Double.min // type 'Double' has no member 'min'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let capCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let capCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let capCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let capCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let capCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let smCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let smCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let smCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let smCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Double = -10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -10000000.0
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -10000000.0
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected pattern
for extension in extensions { // expected '{' to start the body of for-each loop
for char in extension { // expected Sequence expression for for-each loop
for char in extension { // expected '{' to start the body of for-each loop
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected '{' in extension
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -1000000
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return className.lowercased() + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -1000000
for extension in extensions {
var capCount = 0
var smCount = 0
for char in extension {
if char.isUppercase {
capCount += 1
} else if char.isLowercase {
smCount += 1
}
}
let strength = Float(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return className.lowercased() + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
for char in extension { // expected Sequence expression for for-each loop
for char in extension { // expected '{' to start the body of for-each loop
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.leastNonzeroMagnitude
for extension in extensions {
let uppercaseCount = extension.filter { $0.isUppercase }.count
let lowercaseCount = extension.filter { $0.isLowercase }.count
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.leastNonzeroMagnitude
for extension in extensions {
let uppercaseCount = extension.filter { $0.isUppercase }.count
let lowercaseCount = extension.filter { $0.isLowercase }.count
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected pattern
for extension in extensions { // expected '{' to start the body of for-each loop
let uppercaseCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let uppercaseCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let lowercaseCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let lowercaseCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let strength = Double(uppercaseCount - lowercaseCount) // no exact matches in call to initializer
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // expected '{' in extension
} // expected type name in extension declaration
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength: Float = -1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.min
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestStrength: Double = Double.min
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength: Double = Double.min // type 'Double' has no member 'min'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let capCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let capCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let capCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let capCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let capCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let smCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let smCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let smCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let smCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
b = String(b.dropFirst()) + String(b.first!) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
b = String(b.dropFirst()) + String(b.first!) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
b = String(b.dropFirst()) + String(b.first!) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
b = String(b.dropFirst()) + String(b.first!) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(b)
b = String(b.dropFirst()) + String(b.first!)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
b = String(b.dropFirst()) + String(b.first!) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
let rotation = String(b.dropFirst(i) + b.prefix(i))
rotations.append(rotation)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
let rotation = String(b.dropFirst(i) + b.prefix(i))
rotations.append(rotation)
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotatedB = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotatedB) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotatedB = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotatedB) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.dropFirst(i) + b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numStr = String(num)
for digit in numStr {
if let digitInt = Int(String(digit)) {
if digitInt % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numStr = String(num)
for digit in numStr {
if let digitInt = Int(String(digit)) {
if digitInt % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numStr = String(num)
for digit in numStr {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numStr = String(num)
for digit in numStr {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for digit in numString {
if let intDigit = Int(String(digit)) {
if intDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
roman += romanSymbols[i]
num -= romanNumerals[i]
}
}
return roman
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
roman += romanSymbols[i]
num -= romanNumerals[i]
}
}
return roman
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [
(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"),
(100, "c"), (90, "xc"), (50, "l"), (40, "xl"),
(10, "x"), (9, "ix"), (5, "v"), (4, "iv"),
(1, "i")
]
for (value, symbol) in romanNumerals {
while num >= value {
result += symbol
num -= value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [
(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"),
(100, "c"), (90, "xc"), (50, "l"), (40, "xl"),
(10, "x"), (9, "ix"), (5, "v"), (4, "iv"),
(1, "i")
]
for (value, symbol) in romanNumerals {
while num >= value {
result += symbol
num -= value
}
}
return result
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let romanSymbols = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
for i in 0..<romanNumerals.count {
while num >= romanNumerals[i] {
result += romanSymbols[i]
num -= romanNumerals[i]
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var remaining = number
for (value, symbol) in romanNumerals {
while remaining >= value {
result += symbol
remaining -= value
}
}
return result.lowercased()
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
var charSet = Set(word)
if charSet.count > maxCount {
maxCount = charSet.count
maxWord = word
} else if charSet.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
var charSet = Set(word)
if charSet.count > maxCount {
maxCount = charSet.count
maxWord = word
} else if charSet.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
var charSet = Set(word) // variable 'charSet' was never mutated; consider changing to 'let' constant
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxCount || (uniqueCount == maxCount && word < maxWord) {
maxCount = uniqueCount
maxWord = word
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxCount || (uniqueCount == maxCount && word < maxWord) {
maxCount = uniqueCount
maxWord = word
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxCount = 0
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCharacters = Array(Set(word))
if uniqueCharacters.count > maxUniqueCount {
maxUniqueCount = uniqueCharacters.count
maxWord = word
} else if uniqueCharacters.count == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCharacters = Array(Set(word))
if uniqueCharacters.count > maxUniqueCount {
maxUniqueCount = uniqueCharacters.count
maxWord = word
} else if uniqueCharacters.count == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxCount = 0
var maxWord = ""
for word in words {
let uniqueChars = Array(Set(word))
if uniqueChars.count > maxCount {
maxCount = uniqueChars.count
maxWord = word
} else if uniqueChars.count == maxCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxWord = ""
for word in words {
let uniqueCount = Array(Set(word)).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if need <= remaining {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remaining
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if need <= remaining {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remaining
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = min(need, remaining)
let left = max(0, remaining - eaten)
return [number + eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = min(need, remaining)
let left = max(0, remaining - eaten)
return [number + eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number
var left = remaining
if need <= remaining {
total += need
left -= need
} else {
total += remaining
left = 0
}
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number
var left = remaining
if need <= remaining {
total += need
left -= need
} else {
total += remaining
left = 0
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number
var left = remaining
if need <= remaining {
total += need
left -= need
} else {
total += remaining
left = 0
}
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number
var left = remaining
if need <= remaining {
total += need
left -= need
} else {
total += remaining
left = 0
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if need <= remaining {
eaten += need
left -= need
} else {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "//":
result = result / operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
```
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if char == lower { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
} else if char == upper { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
func solve(s: String) -> String {
var result = ""
for char in s {
if let index = s.firstIndex(of: char) {
if s[index].isLetter {
if s[index].isUppercase {
result += String(s[index]).lowercased()
} else {
result += String(s[index]).uppercased()
}
} else {
result += String(s[index])
}
}
}
if !s.contains(where: { $0.isLetter }) {
result = String(s.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if let index = s.firstIndex(of: char) {
if s[index].isLetter {
if s[index].isUppercase {
result += String(s[index]).lowercased()
} else {
result += String(s[index]).uppercased()
}
} else {
result += String(s[index])
}
}
}
if !s.contains(where: { $0.isLetter }) {
result = String(s.reversed())
}
return result
}
```
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
return result
}
```
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if char == lower { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
} else if char == upper { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? Character(char.lowercased()) : Character(char.uppercased()))
} else {
result.append(char)
}
}
if result.allSatisfy({ $0.isLetter }) {
return String(result.reversed())
} else {
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? Character(char.lowercased()) : Character(char.uppercased()))
} else {
result.append(char)
}
}
if result.allSatisfy({ $0.isLetter }) {
return String(result.reversed())
} else {
return result
}
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if let lower = char.lowercased(), let upper = char.uppercased() {
if char == lower {
result.append(upper)
} else if char == upper {
result.append(lower)
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
```
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if let lower = char.lowercased(), let upper = char.uppercased() { // initializer for conditional binding must have Optional type, not 'String'
if char == lower { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
} else if char == upper { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? Character(char.lowercased()) : Character(char.uppercased()))
} else {
result.append(char)
}
}
if !s.contains(where: { $0.isLetter }) {
result = String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? Character(char.lowercased()) : Character(char.uppercased()))
} else {
result.append(char)
}
}
if !s.contains(where: { $0.isLetter }) {
result = String(result.reversed())
}
return result
}
```
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
```
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
```
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
} else {
result += String(char)
}
}
if !hasLetter {
result = String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
if char.isUppercase {
result += String(char).lowercased()
} else {
result += String(char).uppercased()
}
} else {
result += String(char)
}
}
if !hasLetter {
result = String(result.reversed())
}
return result
}
```
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
if char.isUppercase {
result.append(char.lowercased())
} else {
result.append(char.uppercased())
}
} else {
result.append(char)
}
}
if result.contains(where: { $0.isLetter }) {
return result
} else {
return String(result.reversed())
}
}
```
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
var hashString = ""
for byte in hash {
hashString.append(String(format: "%02hhx", byte))
}
return hashString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
var hashString = ""
for byte in hash {
hashString.append(String(format: "%02hhx", byte))
}
return hashString
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash)
}
return hash.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in // using '_' to ignore the result of a Void-returning function is redundant
_ = CC_MD5(buffer.baseAddress, CC_LONG(buffer.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in min(a, b)...max(a, b) {
for digit in String(i) {
if let num = Int(String(digit)), num % 2 == 0 {
result.append(num)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in min(a, b)...max(a, b) {
for digit in String(i) {
if let num = Int(String(digit)), num % 2 == 0 {
result.append(num)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
for digit in String(i) {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
for digit in String(i) {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let num = Int(String(digit)), num % 2 == 0 {
result.append(num)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
let start = min(a, b)
let end = max(a, b)
for i in start...end {
let digits = String(i)
for digit in digits {
if let num = Int(String(digit)), num % 2 == 0 {
result.append(num)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in min(a, b)...max(a, b) {
for digit in String(i) {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in min(a, b)...max(a, b) {
for digit in String(i) {
if let intDigit = Int(String(digit)), intDigit % 2 == 0 {
result.append(intDigit)
}
}
}
return result.sorted()
}
```
// XCTAssertTrue failed