Metadata
Key | Value |
---|---|
engine | transformers |
prompt | instruct |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let difference = abs(numbers[i] - numbers[i + 1])
if difference < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let difference = abs(numbers[i] - numbers[i + 1])
if difference < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
let diff = abs(numbers[i] - numbers[i + 1])
if diff < threshold {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
if stack.isEmpty {
groups.append("()")
}
}
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
if stack.isEmpty {
groups.append("()")
}
}
}
}
return groups
}
```
if!stack.isEmpty { // expected expression, var, or let in 'if' condition
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
```
if!stack.isEmpty { // expected expression, var, or let in 'if' condition
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
var closeCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
group.append(char)
if openCount == closeCount {
groups.append(group)
group = ""
openCount = 0
closeCount = 0
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
var closeCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
group.append(char)
if openCount == closeCount {
groups.append(group)
group = ""
openCount = 0
closeCount = 0
}
}
return groups
}
```
// XCTAssertTrue failed
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
```
if!stack.isEmpty { // expected expression, var, or let in 'if' condition
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var openCount = 0
var groupStart = 0
for (i, c) in parenString.characters.enumerate() {
if c == "(" {
openCount += 1
if openCount == 1 {
groupStart = i
}
} else if c == ")" {
openCount -= 1
if openCount == 0 {
groups.append(parenString.substring(with: groupStart...i))
}
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var openCount = 0
var groupStart = 0
for (i, c) in parenString.characters.enumerate() {
if c == "(" {
openCount += 1
if openCount == 1 {
groupStart = i
}
} else if c == ")" {
openCount -= 1
if openCount == 0 {
groups.append(parenString.substring(with: groupStart...i))
}
}
}
return groups
}
```
for (i, c) in parenString.characters.enumerate() { // value of type 'String' has no member 'enumerate'
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
for char in parenString {
if char == "(" {
stack.append(char)
} else if char == ")" {
if!stack.isEmpty {
stack.removeLast()
}
}
if stack.isEmpty {
groups.append(char.description)
} else {
groups[groups.count - 1] += char.description
}
}
return groups
}
```
if!stack.isEmpty { // expected expression, var, or let in 'if' condition
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
group += String(char)
} else if char == ")" {
openCount -= 1
group += String(char)
if openCount == 0 {
groups.append(group)
group = ""
}
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
group += String(char)
} else if char == ")" {
openCount -= 1
group += String(char)
if openCount == 0 {
groups.append(group)
group = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
var currentGroup = ""
for char in parenString {
if char == "(" {
stack.append(char)
currentGroup.append(char)
} else if char == ")" {
if stack.isEmpty {
continue
}
stack.removeLast()
currentGroup.append(char)
if stack.isEmpty {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var stack = [Character]()
var currentGroup = ""
for char in parenString {
if char == "(" {
stack.append(char)
currentGroup.append(char)
} else if char == ")" {
if stack.isEmpty {
continue
}
stack.removeLast()
currentGroup.append(char)
if stack.isEmpty {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup += String(char)
} else if char == ")" {
openCount -= 1
currentGroup += String(char)
if openCount == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup += String(char)
} else if char == ")" {
openCount -= 1
currentGroup += String(char)
if openCount == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
var closeCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
group.append(char)
if openCount == closeCount {
groups.append(group)
group = ""
openCount = 0
closeCount = 0
}
}
return groups
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var group = ""
var openCount = 0
var closeCount = 0
for char in parenString {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
group.append(char)
if openCount == closeCount {
groups.append(group)
group = ""
openCount = 0
closeCount = 0
}
}
return groups
}
```
// XCTAssertTrue failed
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let differences = numbers.map { abs($0 - mean) }
return differences.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(numbers.count)
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index!= numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
if index!= numbers.count - 1 { // '=' must have consistent whitespace on both sides
if index!= numbers.count - 1 { // cannot force unwrap value of non-optional type 'Int'
if index!= numbers.count - 1 { // use of '=' in a boolean context, did you mean '=='?
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.components(separatedBy: " ")
var maxDepths = [Int]()
for group in groups {
var depth = 0
var maxDepth = 0
for char in group {
if char == "(" {
depth += 1
maxDepth = max(maxDepth, depth)
} else if char == ")" {
depth -= 1
}
}
maxDepths.append(maxDepth)
}
return maxDepths
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.components(separatedBy: " ")
var maxDepths = [Int]()
for group in groups {
var depth = 0
var maxDepth = 0
for char in group {
if char == "(" {
depth += 1
maxDepth = max(maxDepth, depth)
} else if char == ")" {
depth -= 1
}
}
maxDepths.append(maxDepth)
}
return maxDepths
}
```
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var deepestNesting = [Int]()
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
deepestNesting.append(maxDepth)
}
return deepestNesting
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var deepestNesting = [Int]()
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
deepestNesting.append(maxDepth)
}
return deepestNesting
}
```
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var deepestNesting = [Int]()
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
deepestNesting.append(maxDepth)
}
return deepestNesting
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var deepestNesting = [Int]()
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
deepestNesting.append(maxDepth)
}
return deepestNesting
}
```
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxDepth = 0
var currentDepth = 0
var result = [Int]()
for char in parenString {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
} else if char == " " {
result.append(maxDepth)
maxDepth = 0
currentDepth = 0
}
}
if currentDepth > 0 {
result.append(maxDepth)
}
return result
}
```
// XCTAssertTrue failed
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var max = numbers[0]
for number in numbers {
max = max(max, number)
rollingMax.append(max)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var max = numbers[0]
for number in numbers {
max = max(max, number)
rollingMax.append(max)
}
return rollingMax
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = numbers[0]
rollingMax.append(maxSoFar)
for number in numbers {
if number > maxSoFar {
maxSoFar = number
}
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = numbers[0]
rollingMax.append(maxSoFar)
for number in numbers {
if number > maxSoFar {
maxSoFar = number
}
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var max = 0
var result = [Int]()
for number in numbers {
if number > max {
max = number
}
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = 0
var result = [Int]()
for number in numbers {
if number > max {
max = number
}
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = 0
for num in numbers {
if num > max {
max = num
}
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = 0
for num in numbers {
if num > max {
max = num
}
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for num in numbers {
maxSoFar = max(maxSoFar, num)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var rollingMax = [Int]()
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
rollingMax.append(maxSoFar)
}
return rollingMax
}
```
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let substring = string.suffix(from: string.index(string.startIndex, offsetBy: i))
if String(substring) == String(substring.reversed()) {
longestPalindrome = String(substring)
break
}
}
let prefix = string.prefix(string.count - longestPalindrome.count)
return string + String(prefix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let substring = string.suffix(from: string.index(string.startIndex, offsetBy: i))
if String(substring) == String(substring.reversed()) {
longestPalindrome = String(substring)
break
}
}
let prefix = string.prefix(string.count - longestPalindrome.count)
return string + String(prefix.reversed())
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
return string + reversePrefix
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
return string + reversePrefix
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let substring = string.suffix(from: string.index(string.startIndex, offsetBy: i))
if String(substring) == String(substring.reversed()) {
longestPalindrome = String(substring)
break
}
}
let prefix = string.prefix(string.count - longestPalindrome.count)
return string + String(prefix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let substring = string.suffix(from: string.index(string.startIndex, offsetBy: i))
if String(substring) == String(substring.reversed()) {
longestPalindrome = String(substring)
break
}
}
let prefix = string.prefix(string.count - longestPalindrome.count)
return string + String(prefix.reversed())
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return string
}
var longestPalindrome = ""
for i in (0..<string.count).reversed() {
let prefix = string.prefix(i)
let suffix = string.suffix(string.count - i)
if prefix == suffix {
longestPalindrome = String(prefix)
break
}
}
let reversePrefix = String(longestPalindrome.reversed())
let palindrome = string + reversePrefix
return palindrome
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
let bCharacter = b[b.index(b.startIndex, offsetBy: index)]
let xorResult = Int(String(character))! ^ Int(String(bCharacter))!
result += String(xorResult)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
let bCharacter = b[b.index(b.startIndex, offsetBy: index)]
let xorResult = Int(String(character))! ^ Int(String(bCharacter))!
result += String(xorResult)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = a[a.index(a.startIndex, offsetBy: i)]
let bChar = b[b.index(b.startIndex, offsetBy: i)]
let xorResult = Int(String(aChar))! ^ Int(String(bChar))!
result += String(xorResult)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = a[a.index(a.startIndex, offsetBy: i)]
let bChar = b[b.index(b.startIndex, offsetBy: i)]
let xorResult = Int(String(aChar))! ^ Int(String(bChar))!
result += String(xorResult)
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = a[a.index(a.startIndex, offsetBy: i)]
let bChar = b[b.index(b.startIndex, offsetBy: i)]
let xorResult = Int(String(aChar))! ^ Int(String(bChar))!
result += String(xorResult)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aChar = a[a.index(a.startIndex, offsetBy: i)]
let bChar = b[b.index(b.startIndex, offsetBy: i)]
let xorResult = Int(String(aChar))! ^ Int(String(bChar))!
result += String(xorResult)
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
let bCharacter = b[b.index(b.startIndex, offsetBy: index)]
let xorResult = Int(String(character))! ^ Int(String(bCharacter))!
result += String(xorResult)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
let bCharacter = b[b.index(b.startIndex, offsetBy: index)]
let xorResult = Int(String(character))! ^ Int(String(bCharacter))!
result += String(xorResult)
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (index, character) in a.enumerated() {
if index < b.count {
if character == b[b.index(b.startIndex, offsetBy: index)] {
result += "0"
} else {
result += "1"
}
} else {
result += String(character)
}
}
return result
}
```
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
```
guard!strings.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
```
guard!strings.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
```
guard!strings.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard!strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
```
guard!strings.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.sorted(by: { $0.count > $1.count }).first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.sorted(by: { $0.count > $1.count }).first
}
```
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
```
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
```
func longest(strings: [String]) -> String? {
guard strings.count > 0 else {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
return strings.sorted { $0.count > $1.count }.first
}
```
func longest(strings: [String]) -> String? {
if strings.isEmpty {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
if strings.isEmpty {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let remainder = a % b
a = b
b = remainder
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let remainder = a % b
a = b
b = remainder
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // '=' must have consistent whitespace on both sides
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // '=' must have consistent whitespace on both sides
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b!= 0 {
(a, b) = (b, a % b)
}
return a
}
```
while b!= 0 { // use of '=' in a boolean context, did you mean '=='?
while b!= 0 { // cannot force unwrap value of non-optional type 'Int'
while b!= 0 { // '=' must have consistent whitespace on both sides
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for character in string.lowercased() {
characterSet.insert(character)
}
return characterSet.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for character in musicString {
switch character {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 2
default:
break
}
beats.append(currentBeat)
currentBeat = 0
}
return beats
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for character in musicString {
switch character {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 2
default:
break
}
beats.append(currentBeat)
currentBeat = 0
}
return beats
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for char in musicString {
switch char {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 1
default:
break
}
beats.append(currentBeat)
}
return beats
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for char in musicString {
switch char {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 1
default:
break
}
beats.append(currentBeat)
}
return beats
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for character in musicString {
switch character {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 2
default:
break
}
beats.append(currentBeat)
}
return beats
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
var currentBeat = 0
for character in musicString {
switch character {
case "o":
currentBeat += 4
case "|":
currentBeat /= 2
case ".":
currentBeat /= 2
default:
break
}
beats.append(currentBeat)
}
return beats
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
switch char {
case "o":
currentNote += "o"
case "|":
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
case ".":
currentNote += "."
default:
continue
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
switch char {
case "o":
currentNote += "o"
case "|":
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
case ".":
currentNote += "."
default:
continue
}
}
return result
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
continue
}
}
return durations
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == "o" {
currentNote += "o"
} else if char == "." {
currentNote += "."
} else if char == "|" {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == "o" {
currentNote += "o"
} else if char == "." {
currentNote += "."
} else if char == "|" {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
}
}
return result
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
break
}
}
return durations
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o|.| o| o|.|.|.|.| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.split(separator: " ")
var durations = [Int]()
for note in notes {
switch note {
case "o":
durations.append(4)
case "o|":
durations.append(2)
case ".|":
durations.append(1)
default:
break
}
}
return durations
}
```
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
for i in 0..<string.count {
if i + substring.count <= string.count {
let substringRange = string.index(string.startIndex, offsetBy: i)..<string.index(string.startIndex, offsetBy: i + substring.count)
let substring = string[substringRange]
if substring == substring {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
for i in 0..<string.count {
if i + substring.count <= string.count {
let substringRange = string.index(string.startIndex, offsetBy: i)..<string.index(string.startIndex, offsetBy: i + substring.count)
let substring = string[substringRange]
if substring == substring {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
if substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
return string.components(separatedBy: substring).count - 1
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
if string.isEmpty || substring.isEmpty {
return 0
}
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string.range(of: substring, options: [], range: index..<string.endIndex) {
count += 1
index = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberValues = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0
}
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberValues = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0
}
return sortedNumbers.joined(separator: " ")
}
```
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // cannot use optional chaining on non-optional value of type 'Array<String>.Index' (aka 'Int')
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // consecutive statements on a line must be separated by ';'
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // consecutive statements on a line must be separated by ';'
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberValues = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0
}
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let numberValues = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0
}
return sortedNumbers.joined(separator: " ")
}
```
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // cannot use optional chaining on non-optional value of type 'Array<String>.Index' (aka 'Int')
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // consecutive statements on a line must be separated by ';'
numberWords.firstIndex(of: $0)?? 0 < numberWords.firstIndex(of: $1)?? 0 // consecutive statements on a line must be separated by ';'
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.components(separatedBy: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.components(separatedBy: " ")
let numberValues = numberWords.map { Int(wordToNumber($0))! }
let sortedNumberValues = numberValues.sorted()
let sortedNumberWords = sortedNumberValues.map { numberToWord($0) }
return sortedNumberWords.joined(separator: " ")
}
func wordToNumber(_ word: String) -> String {
switch word {
case "zero": return "0"
case "one": return "1"
case "two": return "2"
case "three": return "3"
case "four": return "4"
case "five": return "5"
case "six": return "6"
case "seven": return "7"
case "eight": return "8"
case "nine": return "9"
default: return ""
}
}
func numberToWord(_ number: Int) -> String {
switch number {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.components(separatedBy: " ")
let numberValues = numberWords.map { Int(wordToNumber($0))! }
let sortedNumberValues = numberValues.sorted()
let sortedNumberWords = sortedNumberValues.map { numberToWord($0) }
return sortedNumberWords.joined(separator: " ")
}
func wordToNumber(_ word: String) -> String {
switch word {
case "zero": return "0"
case "one": return "1"
case "two": return "2"
case "three": return "3"
case "four": return "4"
case "five": return "5"
case "six": return "6"
case "seven": return "7"
case "eight": return "8"
case "nine": return "9"
default: return ""
}
}
func numberToWord(_ number: Int) -> String {
switch number {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five','six','seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { numberMap[$0]! < numberMap[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDifference = Double.infinity
var closestElements = (0.0, 0.0)
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDifference = Double.infinity
var closestElements = (0.0, 0.0)
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDifference = Double.infinity
var closestElements = (Double.nan, Double.nan)
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDifference = Double.infinity
var closestElements = (Double.nan, Double.nan)
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < minDifference {
minDifference = difference
closestElements = (numbers[i], numbers[j])
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let distance = abs(numbers[i] - numbers[j])
if distance < closestDistance {
closestElements = (numbers[i], numbers[j])
closestDistance = distance
}
}
}
return closestElements
}
```
// XCTAssertTrue failed
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let diff = maxValue - minValue
return numbers.map { ($0 - minValue) / diff }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
return numbers.map { ($0 - minValue) / (maxValue - minValue) }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int } as! [Int]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int } as! [Int]
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
}
return nil
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
if let integer = value as? Int {
return integer
} else {
return nil
}
}
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in (2...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in (2...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for divisor in (2...n/2).reversed() {
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in (1...n/2).reversed() {
if n % i == 0 {
return i
}
}
return 1
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var result = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
result.append(i)
n /= i
}
i += 1
}
if n > 1 {
result.append(n)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
result.append(i)
n /= i
}
i += 1
}
if n > 1 {
result.append(n)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var factor = 2
while number > 1 {
if number % factor == 0 {
factors.append(factor)
number /= factor
} else {
factor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var factor = 2
while number > 1 {
if number % factor == 0 {
factors.append(factor)
number /= factor
} else {
factor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
var n = n
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var result = [Int]()
var current = n
var factor = 2
while current > 1 {
if current % factor == 0 {
result.append(factor)
current /= factor
} else {
factor += 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result = [Int]()
var current = n
var factor = 2
while current > 1 {
if current % factor == 0 {
result.append(factor)
current /= factor
} else {
factor += 1
}
}
return result
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
while number > 1 {
for i in 2...number {
if number % i == 0 {
factors.append(i)
number /= i
break
}
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
while number > 1 {
for i in 2...number {
if number % i == 0 {
factors.append(i)
number /= i
break
}
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var result = [Int]()
var current = n
for i in 2...n {
while current % i == 0 {
result.append(i)
current /= i
}
if current == 1 {
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result = [Int]()
var current = n
for i in 2...n {
while current % i == 0 {
result.append(i)
current /= i
}
if current == 1 {
break
}
}
return result
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while number > 1 {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return factors
}
```
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = Set<Int>()
var result = [Int]()
for number in numbers {
if!uniqueNumbers.contains(number) {
uniqueNumbers.insert(number)
result.append(number)
}
}
return result
}
```
if!uniqueNumbers.contains(number) { // expected expression, var, or let in 'if' condition
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isUppercase {
flippedString += character.lowercased()
} else if character.isLowercase {
flippedString += character.uppercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for character in string {
if character.isLowercase {
flippedString += character.uppercased()
} else if character.isUppercase {
flippedString += character.lowercased()
} else {
flippedString += String(character)
}
}
return flippedString
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("", +)
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 || n == 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 || n == 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 || n == 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 || n == 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, to: Int(sqrt(Double(n))) + 1, by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, to: Int(sqrt(Double(n))) + 1, by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, to: Int(sqrt(Double(n))) + 1, by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, to: Int(sqrt(Double(n))) + 1, by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 3 == 0 {
result.append(contentsOf: l[i...i].sorted())
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var set = Set<Int>()
for element in l {
set.insert(element)
}
return Array(set).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = Set<Int>()
for element in l {
uniqueElements.insert(element)
}
return Array(uniqueElements).sorted()
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
count += string.filter { $0 == "7" }.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
count += string.filter { $0 == "7" }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).filter { $0 == "7" }
count += digits.count
}
}
return count
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
sortedArray.append(l[i])
}
}
sortedArray.sort()
var resultArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
resultArray.append(sortedArray[i/2])
} else {
resultArray.append(l[i])
}
}
return resultArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
sortedArray.append(l[i])
}
}
sortedArray.sort()
var resultArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
resultArray.append(sortedArray[i/2])
} else {
resultArray.append(l[i])
}
}
return resultArray
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for (index, element) in l.enumerated() {
if index % 2 == 0 {
sortedArray.append(element)
}
}
sortedArray.sort()
var resultArray = [Int]()
for (index, element) in l.enumerated() {
if index % 2 == 0 {
resultArray.append(sortedArray[index / 2])
} else {
resultArray.append(element)
}
}
return resultArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for (index, element) in l.enumerated() {
if index % 2 == 0 {
sortedArray.append(element)
}
}
sortedArray.sort()
var resultArray = [Int]()
for (index, element) in l.enumerated() {
if index % 2 == 0 {
resultArray.append(sortedArray[index / 2])
} else {
resultArray.append(element)
}
}
return resultArray
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
sortedArray.append(l[i])
}
}
sortedArray.sort()
var resultArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
resultArray.append(sortedArray[i/2])
} else {
resultArray.append(l[i])
}
}
return resultArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var sortedArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
sortedArray.append(l[i])
}
}
sortedArray.sort()
var resultArray = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
resultArray.append(sortedArray[i/2])
} else {
resultArray.append(l[i])
}
}
return resultArray
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
} else {
result.append(l[i])
}
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l[i])
}
}
result.sort()
for i in 0..<l.count {
if i % 2 == 1 {
result.insert(l[i], at: i)
}
}
return result
}
```
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let isPrime = { (number: Int) -> Bool in
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
if isPrime(fibonacci[n - 1]) {
return fibonacci[n - 1]
}
return primeFib(n: n + 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let isPrime = { (number: Int) -> Bool in
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
if isPrime(fibonacci[n - 1]) {
return fibonacci[n - 1]
}
return primeFib(n: n + 1)
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciSequence = [1, 1]
var primeNumbers = [2]
var currentNumber = 2
while primeNumbers.count < n {
currentNumber += 1
var isPrime = true
for prime in primeNumbers {
if currentNumber % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(currentNumber)
}
}
while fibonacciSequence.count < n {
let nextFibonacciNumber = fibonacciSequence[fibonacciSequence.count - 1] + fibonacciSequence[fibonacciSequence.count - 2]
fibonacciSequence.append(nextFibonacciNumber)
}
return fibonacciSequence[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciSequence = [1, 1]
var primeNumbers = [2]
var currentNumber = 2
while primeNumbers.count < n {
currentNumber += 1
var isPrime = true
for prime in primeNumbers {
if currentNumber % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(currentNumber)
}
}
while fibonacciSequence.count < n {
let nextFibonacciNumber = fibonacciSequence[fibonacciSequence.count - 1] + fibonacciSequence[fibonacciSequence.count - 2]
fibonacciSequence.append(nextFibonacciNumber)
}
return fibonacciSequence[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let primeFibonacci = fibonacci.filter { isPrime($0) }
return primeFibonacci[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let primeFibonacci = fibonacci.filter { isPrime($0) }
return primeFibonacci[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var primeFibonacci = [2, 3]
var i = 2
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[i - 1] + fibonacci[i - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
i += 1
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var primeFibonacci = [2, 3]
var i = 2
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[i - 1] + fibonacci[i - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
i += 1
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
var primeFibonacci = [2, 3]
var i = 2
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[i - 1] + fibonacci[i - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
i += 1
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
var i = 3
while i * i <= number {
if number % i == 0 {
return false
}
i += 2
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
var primeFibonacci = [2, 3]
var i = 2
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[i - 1] + fibonacci[i - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
i += 1
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
var i = 3
while i * i <= number {
if number % i == 0 {
return false
}
i += 2
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
if n == 1 {
return 2
}
if n == 2 {
return 3
}
var fib1 = 2
var fib2 = 3
var count = 3
while count < n {
let nextFib = fib1 + fib2
if isPrime(nextFib) {
count += 1
}
fib1 = fib2
fib2 = nextFib
}
return fib2
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
if n == 1 {
return 2
}
if n == 2 {
return 3
}
var fib1 = 2
var fib2 = 3
var count = 3
while count < n {
let nextFib = fib1 + fib2
if isPrime(nextFib) {
count += 1
}
fib1 = fib2
fib2 = nextFib
}
return fib2
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var primeFibonacci = [2, 3]
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var primeFibonacci = [2, 3]
while primeFibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
if isPrime(number: nextFibonacci) {
primeFibonacci.append(nextFibonacci)
}
}
return primeFibonacci[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
if n == 1 {
return 2
}
if n == 2 {
return 3
}
var fib1 = 2
var fib2 = 3
var count = 3
while count <= n {
let fib3 = fib1 + fib2
if isPrime(fib3) {
count += 1
if count == n {
return fib3
}
}
fib1 = fib2
fib2 = fib3
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
if n == 1 {
return 2
}
if n == 2 {
return 3
}
var fib1 = 2
var fib2 = 3
var count = 3
while count <= n {
let fib3 = fib1 + fib2
if isPrime(fib3) {
count += 1
if count == n {
return fib3
}
}
fib1 = fib2
fib2 = fib3
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(n))), by: 2) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let primeFibonacci = fibonacci.filter { isPrime($0) }
return primeFibonacci[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
let nextFibonacci = fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2]
fibonacci.append(nextFibonacci)
}
let primeFibonacci = fibonacci.filter { isPrime($0) }
return primeFibonacci[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
fibonacci.append(fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2])
}
let number = fibonacci[n - 1]
if isPrime(number) {
return number
}
return primeFib(n: n + 1)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [1, 1]
while fibonacci.count < n {
fibonacci.append(fibonacci[fibonacci.count - 1] + fibonacci[fibonacci.count - 2])
}
let number = fibonacci[n - 1]
if isPrime(number) {
return number
}
return primeFib(n: n + 1)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
if sortedArray[i] == sortedArray[i + 1] {
continue
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
if sortedArray[i] == sortedArray[i + 1] {
continue
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedList = l.sorted()
for i in 0..<sortedList.count - 2 {
if sortedList[i] == 0 {
return true
}
if sortedList[i] > 0 {
return false
}
if binarySearch(sortedList, target: -sortedList[i], start: i + 1, end: sortedList.count - 1) {
return true
}
}
return false
}
func binarySearch(_ list: [Int], target: Int, start: Int, end: Int) -> Bool {
if start > end {
return false
}
let mid = (start + end) / 2
if list[mid] == target {
return true
} else if list[mid] < target {
return binarySearch(list, target: target, start: mid + 1, end: end)
} else {
return binarySearch(list, target: target, start: start, end: mid - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedList = l.sorted()
for i in 0..<sortedList.count - 2 {
if sortedList[i] == 0 {
return true
}
if sortedList[i] > 0 {
return false
}
if binarySearch(sortedList, target: -sortedList[i], start: i + 1, end: sortedList.count - 1) {
return true
}
}
return false
}
func binarySearch(_ list: [Int], target: Int, start: Int, end: Int) -> Bool {
if start > end {
return false
}
let mid = (start + end) / 2
if list[mid] == target {
return true
} else if list[mid] < target {
return binarySearch(list, target: target, start: mid + 1, end: end)
} else {
return binarySearch(list, target: target, start: start, end: mid - 1)
}
}
```
// XCTAssertTrue failed
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
if sortedArray[i] == sortedArray[i + 1] {
continue
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] > 0 {
break
}
if sortedArray[i] == sortedArray[i + 1] {
continue
}
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] == 0 {
return true
}
if sortedArray[i] > 0 {
break
}
let target = -sortedArray[i]
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[left] + sortedArray[right]
if sum == target {
return true
} else if sum < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
if l.count < 3 {
return false
}
let sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
if sortedArray[i] == 0 {
return true
}
if sortedArray[i] > 0 {
break
}
let target = -sortedArray[i]
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[left] + sortedArray[right]
if sum == target {
return true
} else if sum < target {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n
}
```
// XCTAssertTrue failed
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for n in l {
if seen.contains(-n) {
return true
}
seen.insert(n)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for n in l {
if seen.contains(-n) {
return true
}
seen.insert(n)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for n in l {
if seen.contains(-n) {
return true
}
seen.insert(n)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for n in l {
if seen.contains(-n) {
return true
}
seen.insert(n)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for x in l {
if seen.contains(-x) {
return true
}
seen.insert(x)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = "\(remainder)" + result
quotient = quotient / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = "\(remainder)" + result
quotient = quotient / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = 0
var quotient = x
while quotient > 0 {
remainder = quotient % base
quotient = quotient / base
result = String(remainder) + result
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = 0
var quotient = x
while quotient > 0 {
remainder = quotient % base
quotient = quotient / base
result = String(remainder) + result
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = String(remainder) + result
quotient = quotient / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = String(remainder) + result
quotient = quotient / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = String(remainder) + result
quotient = quotient / base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var quotient = x
while quotient > 0 {
let remainder = quotient % base
result = String(remainder) + result
quotient = quotient / base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var quotient = x
var result = ""
while quotient > 0 {
let remainder = quotient % base
quotient = quotient / base
result = String(remainder) + result
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var quotient = x
var result = ""
while quotient > 0 {
let remainder = quotient % base
quotient = quotient / base
result = String(remainder) + result
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return 0.5 * Double(a) * Double(h)
}
```
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 3...n {
d = a + b + c
a = b
b = c
c = d
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 3...n {
d = a + b + c
a = b
b = c
c = d
}
return c
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
fib4Array[3] = 0
for i in 4...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n < 0 {
return 0
}
var fib4Array = [Int](repeating: 0, count: n + 1)
fib4Array[0] = 0
fib4Array[1] = 0
fib4Array[2] = 2
for i in 3...n {
fib4Array[i] = fib4Array[i - 1] + fib4Array[i - 2] + fib4Array[i - 3] + fib4Array[i - 4]
}
return fib4Array[n]
}
```
// Fatal error: Index out of range
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middleIndex = count / 2
return Double(sorted[middleIndex] + sorted[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middleIndex = count / 2
return Double(sorted[middleIndex] + sorted[middleIndex - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middle = count / 2
return Double(sorted[middle] + sorted[middle - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middle = count / 2
return Double(sorted[middle] + sorted[middle - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let middleIndex = sortedList.count / 2
if sortedList.count % 2 == 0 {
return Double(sortedList[middleIndex - 1] + sortedList[middleIndex]) / 2.0
} else {
return Double(sortedList[middleIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let middleIndex = sortedList.count / 2
if sortedList.count % 2 == 0 {
return Double(sortedList[middleIndex - 1] + sortedList[middleIndex]) / 2.0
} else {
return Double(sortedList[middleIndex])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middleIndex = count / 2
return Double(sorted[middleIndex] + sorted[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
let middleIndex = count / 2
return Double(sorted[middleIndex] + sorted[middleIndex - 1]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
return Double(sortedList[count / 2 - 1] + sortedList[count / 2]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
return Double(sortedList[count / 2 - 1] + sortedList[count / 2]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 1 {
return Double(sorted[count / 2])
} else {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
}
}
```
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedList = l.sorted()
let count = sortedList.count
if count % 2 == 1 {
return Double(sortedList[count / 2])
} else {
let middleIndex = count / 2
return Double(sortedList[middleIndex] + sortedList[middleIndex - 1]) / 2.0
}
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return reversedText == text
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return reversedText == text
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return text == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return text == reversed
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
```
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return reversed == text
}
```
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return text == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversed = String(text.reversed())
return text == reversed
}
```
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = (half * half) % p
if n % 2 == 1 {
return (result * 2) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = (half * half) % p
if n % 2 == 1 {
return (result * 2) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
var result = 1
var powerOfTwo = 2
while n > 0 {
if n % 2 == 1 {
result = (result * powerOfTwo) % p
}
powerOfTwo = (powerOfTwo * powerOfTwo) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
var result = 1
var powerOfTwo = 2
while n > 0 {
if n % 2 == 1 {
result = (result * powerOfTwo) % p
}
powerOfTwo = (powerOfTwo * powerOfTwo) % p
n /= 2
}
return result
}
```
n /= 2 // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = (half * half) % p
if n % 2 == 1 {
return (result * 2) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = (half * half) % p
if n % 2 == 1 {
return (result * 2) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = half * half % p
if n % 2 == 1 {
return result * 2 % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
let result = half * half % p
if n % 2 == 1 {
return result * 2 % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
var result = 1
var power = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
exponent /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
var result = 1
var power = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
exponent /= 2
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n/2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * (n % p)) % p
}
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * n) % p
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
if n == 0 {
return 1
}
let half = modp(n: n / 2, p: p)
if n % 2 == 0 {
return (half * half) % p
} else {
return ((half * half) % p * n) % p
}
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
exponent = exponent / 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
exponent = exponent / 2
}
return result
}
```
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
```
if!vowels.contains(lowercaseCharacter) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let char = String(character).lowercased()
if!vowels.contains(char) {
result += char
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let char = String(character).lowercased()
if!vowels.contains(char) {
result += char
}
}
return result
}
```
if!vowels.contains(char) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
```
if!vowels.contains(lowercaseCharacter) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
```
if!vowels.contains(lowercaseCharacter) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let char = String(character).lowercased()
if!vowels.contains(char) {
result += char
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let char = String(character).lowercased()
if!vowels.contains(char) {
result += char
}
}
return result
}
```
if!vowels.contains(char) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
```
if!vowels.contains(lowercaseCharacter) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for character in text {
let lowercaseCharacter = String(character).lowercased()
if!vowels.contains(lowercaseCharacter) {
result += String(character)
}
}
return result
}
```
if!vowels.contains(lowercaseCharacter) { // expected expression, var, or let in 'if' condition
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter {!vowels.contains($0) })
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
let charCounts0 = chars0.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
let charCounts1 = chars1.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
return charCounts0 == charCounts1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
let charCounts0 = chars0.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
let charCounts1 = chars1.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
return charCounts0 == charCounts1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
let charCounts0 = chars0.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
let charCounts1 = chars1.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
return charCounts0 == charCounts1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
let charCounts0 = chars0.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
let charCounts1 = chars1.reduce(into: [Character: Int]()) { counts, char in
counts[char, default: 0] += 1
}
return charCounts0 == charCounts1
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
var a = 1
var b = 1
for _ in 3...n {
(a, b) = (b, a + b)
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
var a = 1
var b = 1
for _ in 3...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
var a = 1
var b = 1
for _ in 3...n {
(a, b) = (b, a + b)
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
var a = 1
var b = 1
for _ in 3...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 2 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last!= "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last!= "<" {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
if stack.last!= "<" { // '=' must have consistent whitespace on both sides
if stack.last!= "<" { // use of '=' in a boolean context, did you mean '=='?
if stack.last!= "<" { // cannot assign through '!': 'last' is a get-only property
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = l[0] < l[1]
for i in 1..<l.count - 1 {
if l[i] == l[i + 1] {
continue
}
if increasing {
if l[i] > l[i + 1] {
return false
}
} else {
if l[i] < l[i + 1] {
return false
}
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = l[0] < l[1]
for i in 1..<l.count - 1 {
if l[i] == l[i + 1] {
continue
}
if increasing {
if l[i] > l[i + 1] {
return false
}
} else {
if l[i] < l[i + 1] {
return false
}
}
}
return true
}
```
var increasing = l[0] < l[1] // variable 'increasing' was never mutated; consider changing to 'let' constant
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
} else if l[i] < l[i - 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedElements = commonElements.sorted()
return sortedElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedElements = commonElements.sorted()
return sortedElements
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedElements = commonElements.sorted()
return sortedElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedElements = commonElements.sorted()
return sortedElements
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedCommonElements = commonElements.sorted()
return sortedCommonElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedCommonElements = commonElements.sorted()
return sortedCommonElements
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let common = set1.intersection(set2)
return Array(common).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
for element in l1 {
if l2.contains(element) {
set.insert(element)
}
}
return Array(set).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
for element in l1 {
if l2.contains(element) {
set.insert(element)
}
}
return Array(set).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedCommonElements = commonElements.sorted()
return sortedCommonElements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
let sortedCommonElements = commonElements.sorted()
return sortedCommonElements
}
```
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
while factor * factor <= n {
if n % factor == 0 {
largestFactor = factor
while n % factor == 0 {
n /= factor
}
}
factor += 1
}
if n > 1 {
largestFactor = n
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
while factor * factor <= n {
if n % factor == 0 {
largestFactor = factor
while n % factor == 0 {
n /= factor
}
}
factor += 1
}
if n > 1 {
largestFactor = n
}
return largestFactor
}
```
n /= factor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var number = n
var factor = 2
var largestFactor = 1
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
return number > largestFactor? number : largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var number = n
var factor = 2
var largestFactor = 1
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
return number > largestFactor? number : largestFactor
}
```
return number > largestFactor? number : largestFactor // variable is unused
return number > largestFactor? number : largestFactor // cannot use optional chaining on non-optional value of type 'Int'
return number > largestFactor? number : largestFactor // expected expression
return number > largestFactor? number : largestFactor // consecutive statements on a line must be separated by ';'
return number > largestFactor? number : largestFactor // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return number > largestFactor? number : largestFactor // consecutive statements on a line must be separated by ';'
return number > largestFactor? number : largestFactor // cannot convert return expression of type 'Bool' to return type 'Int'
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
while factor * factor <= n {
if n % factor == 0 {
largestFactor = factor
while n % factor == 0 {
n /= factor
}
}
factor += 1
}
if n > 1 {
largestFactor = n
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
while factor * factor <= n {
if n % factor == 0 {
largestFactor = factor
while n % factor == 0 {
n /= factor
}
}
factor += 1
}
if n > 1 {
largestFactor = n
}
return largestFactor
}
```
n /= factor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var largestFactor = 1
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var largestFactor = 1
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var largestFactor = 1
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var largestFactor = 1
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var number = n
var factor = 2
var largestFactor = 1
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var number = n
var factor = 2
var largestFactor = 1
while factor * factor <= number {
if number % factor == 0 {
number /= factor
largestFactor = factor
} else {
factor += 1
}
}
if number > largestFactor {
largestFactor = number
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
var remaining = n
while factor * factor <= remaining {
if remaining % factor == 0 {
largestFactor = factor
remaining /= factor
} else {
factor += 1
}
}
if remaining > largestFactor {
largestFactor = remaining
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var largestFactor = 1
var remaining = n
while factor * factor <= remaining {
if remaining % factor == 0 {
largestFactor = factor
remaining /= factor
} else {
factor += 1
}
}
if remaining > largestFactor {
largestFactor = remaining
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var factor = 2
var largestFactor = 1
while n > 1 {
if n % factor == 0 {
n /= factor
largestFactor = factor
while n % factor == 0 {
n /= factor
}
} else {
factor += 1
}
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var factor = 2
var largestFactor = 1
while n > 1 {
if n % factor == 0 {
n /= factor
largestFactor = factor
while n % factor == 0 {
n /= factor
}
} else {
factor += 1
}
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
while number % factor == 0 {
number /= factor
}
} else {
factor += 1
}
}
return number
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
var number = n
while factor * factor <= number {
if number % factor == 0 {
number /= factor
while number % factor == 0 {
number /= factor
}
} else {
factor += 1
}
}
return number
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var n = n
var factor = 2
var largestFactor = 1
while n > 1 {
if n % factor == 0 {
n /= factor
largestFactor = factor
while n % factor == 0 {
n /= factor
}
} else {
factor += 1
}
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var factor = 2
var largestFactor = 1
while n > 1 {
if n % factor == 0 {
n /= factor
largestFactor = factor
while n % factor == 0 {
n /= factor
}
} else {
factor += 1
}
}
return largestFactor
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return n * (n + 1) / 2
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 +....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var derivative = [Int]()
for i in 1..<xs.count {
derivative.append(i * xs[i])
}
return derivative
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 || n == 2 {
return 0
} else if n == 3 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 4...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 || n == 2 {
return 0
} else if n == 3 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 4...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let next = a + b + c
a = b
b = c
c = next
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let next = a + b + c
a = b
b = c
c = next
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 || n == 2 {
return 0
}
if n == 3 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 4...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 || n == 2 {
return 0
}
if n == 3 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 4...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
}
var a = 0
var b = 0
var c = 1
for _ in 3...n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
```
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for c in s.lowercased() {
if vowels.contains(String(c)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for c in s.lowercased() {
if vowels.contains(String(c)) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
return s.filter { vowels.contains($0.lowercased()) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
return s.filter { vowels.contains($0.lowercased()) }.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for char in s.lowercased() {
if vowels.contains(String(char)) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set("aeiou")
return s.filter { vowels.contains($0.lowercased()) }.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for c in s.lowercased() {
if vowels.contains(String(c)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u"])
var count = 0
for c in s.lowercased() {
if vowels.contains(String(c)) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
```
return String(shiftedDigits.reversed().map { String($0) }) // no exact matches in call to initializer
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
```
return String(shiftedDigits.reversed().map { String($0) }) // no exact matches in call to initializer
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return shiftedDigits.reversed().joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return shiftedDigits.reversed().joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
```
return String(shiftedDigits.reversed().map { String($0) }) // no exact matches in call to initializer
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return shiftedDigits.reversed().joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return shiftedDigits.reversed().joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..<digits.count] + digits[0..<digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) }.joined())
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
```
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // '..<' is not a postfix unary operator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // expected ',' separator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // extra argument in subscript
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // '..<' is not a postfix unary operator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // extra argument in subscript
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // expected ',' separator
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift])
return String(shiftedDigits.reversed().map { String($0) })
}
```
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // '..<' is not a postfix unary operator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // expected ',' separator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // extra argument in subscript
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // '..<' is not a postfix unary operator
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // extra argument in subscript
let shiftedDigits = Array(digits[digits.count - shift..< digits.count] + digits[0..< digits.count - shift]) // expected ',' separator
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s {
if c.isUppercase {
sum += Int(c.asciiValue!)
}
}
return sum
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
return n - (apples + oranges)
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let words = s.components(separatedBy: " ")
let apples = Int(words[0])!
let oranges = Int(words[4])!
let fruits = apples + oranges
let mangoes = n - fruits
return mangoes
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue == Int.max {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue == Int.max {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex == -1 {
return []
}
return [smallestEvenValue, smallestEvenIndex]
}
```
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for num in lst {
if freq[num]! >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for num in lst {
if freq[num]! >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for (num, count) in freq {
if num <= count {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for (num, count) in freq {
if num <= count {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for num in lst {
if frequencies[num]! >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for num in lst {
if frequencies[num]! >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencies = [Int: Int]()
for num in lst {
frequencies[num, default: 0] += 1
}
for (num, freq) in frequencies {
if num <= freq {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if!remaining.isEmpty {
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if!remaining.isEmpty {
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
```
while!remainingList.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
```
while!remainingList.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
```
while!remainingList.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if!remaining.isEmpty {
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if!remaining.isEmpty {
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var remaining = lst
while!remaining.isEmpty {
if let min = remaining.min() {
result.append(min)
remaining.remove(at: remaining.firstIndex(of: min)!)
}
if let max = remaining.max() {
result.append(max)
remaining.remove(at: remaining.firstIndex(of: max)!)
}
}
return result
}
```
while!remaining.isEmpty { // expected expression, var, or let in 'while' condition
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = [Int]()
var remainingList = lst
while!remainingList.isEmpty {
if let min = remainingList.min() {
sortedList.append(min)
remainingList.remove(at: remainingList.firstIndex(of: min)!)
}
if let max = remainingList.max() {
sortedList.append(max)
remainingList.remove(at: remainingList.firstIndex(of: max)!)
}
}
return sortedList
}
```
while!remainingList.isEmpty { // expected expression, var, or let in 'while' condition
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || a + c <= b || b + c <= a {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(area * 100) / 100
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
```
return q == reversed // cannot convert value of type 'ReversedCollection<[Int]>' to expected argument type '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
for i in 0..<q.count {
if q[i]!= reversed[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
for i in 0..<q.count {
if q[i]!= reversed[i] {
return false
}
}
return true
}
```
if q[i]!= reversed[i] { // cannot convert value of type 'Int' to expected argument type 'ReversedCollection<[Int]>.Index'
if q[i]!= reversed[i] { // cannot force unwrap value of non-optional type 'Int'
if q[i]!= reversed[i] { // '=' must have consistent whitespace on both sides
if q[i]!= reversed[i] { // use of '=' in a boolean context, did you mean '=='?
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
for i in 0..<q.count {
if q[i]!= reversed[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
for i in 0..<q.count {
if q[i]!= reversed[i] {
return false
}
}
return true
}
```
if q[i]!= reversed[i] { // '=' must have consistent whitespace on both sides
if q[i]!= reversed[i] { // use of '=' in a boolean context, did you mean '=='?
if q[i]!= reversed[i] { // cannot convert value of type 'Int' to expected argument type 'ReversedCollection<[Int]>.Index'
if q[i]!= reversed[i] { // cannot force unwrap value of non-optional type 'Int'
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
```
return q == reversed // cannot convert value of type 'ReversedCollection<[Int]>' to expected argument type '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
let reversed = q.reversed()
return q == reversed
}
```
return q == reversed // cannot convert value of type 'ReversedCollection<[Int]>' to expected argument type '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 1 {
return q[0] <= w
}
let sum = q.reduce(0, +)
if sum > w {
return false
}
var reversed = q
reversed.reverse()
return q == reversed
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
arr[right] = arr[left]
changes += 1
} else {
arr[left] = arr[right]
changes += 1
}
right -= 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
arr[right] = arr[left]
changes += 1
} else {
arr[left] = arr[right]
changes += 1
}
right -= 1
}
}
return changes
}
```
arr[right] = arr[left] // cannot assign through subscript: 'arr' is a 'let' constant
arr[left] = arr[right] // cannot assign through subscript: 'arr' is a 'let' constant
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else if arr[left] < arr[right] {
arr[right] = arr[left]
changes += 1
right -= 1
} else {
arr[left] = arr[right]
changes += 1
left += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else if arr[left] < arr[right] {
arr[right] = arr[left]
changes += 1
right -= 1
} else {
arr[left] = arr[right]
changes += 1
left += 1
}
}
return changes
}
```
arr[right] = arr[left] // cannot assign through subscript: 'arr' is a 'let' constant
arr[left] = arr[right] // cannot assign through subscript: 'arr' is a 'let' constant
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
if arr[left] < arr[right] {
left += 1
} else {
right -= 1
}
changes += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
for str in lst1 {
total1 += str.count
}
var total2 = 0
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
}
return lst1
}
```
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
if count > 2 {
return false
}
}
return count == 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
if count > 2 {
return false
}
}
return count == 2
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
if count > 2 {
return false
}
}
return count == 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
if count > 2 {
return false
}
}
return count == 2
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 4 {
return false
}
var count = 0
for i in 2...a {
if a % i == 0 {
count += 1
if count > 3 {
return false
}
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 4 {
return false
}
var count = 0
for i in 2...a {
if a % i == 0 {
count += 1
if count > 3 {
return false
}
}
}
return count == 3
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
}
if a > 1 {
count += 1
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var i = 2
while i * i <= a {
if a % i == 0 {
count += 1
a /= i
} else {
i += 1
}
}
if a > 1 {
count += 1
}
return count == 3
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
let b = a / i
var count = 0
for j in 2...9 {
if b % j == 0 {
count += 1
}
}
if count == 1 {
let c = a / (i * b)
var count = 0
for j in 2...9 {
if c % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
let b = a / i
var count = 0
for j in 2...9 {
if b % j == 0 {
count += 1
}
}
if count == 1 {
let c = a / (i * b)
var count = 0
for j in 2...9 {
if c % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
for i in 2...a {
if a % i == 0 {
count += 1
if count > 3 {
return false
}
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
for i in 2...a {
if a % i == 0 {
count += 1
if count > 3 {
return false
}
}
}
return count == 3
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...9 {
if a % i == 0 {
var count = 0
for j in 2...9 {
if i % j == 0 {
count += 1
}
}
if count == 1 {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
var result = 1
while result <= x {
result = n ** power
if result == x {
return true
}
power += 1
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
var result = 1
while result <= x {
result = n ** power
if result == x {
return true
}
power += 1
}
return false
}
```
result = n ** power // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
var result = 1
while result < x {
power += 1
result = n ** power
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
var result = 1
while result < x {
power += 1
result = n ** power
}
return result == x
}
```
result = n ** power // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 1
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 1
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 1
while power < x {
power *= n
}
return power == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 1
while power < x {
power *= n
}
return power == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
while n.power(power) <= x {
if n.power(power) == x {
return true
}
power += 1
}
return false
}
private extension Int {
func power(_ p: Int) -> Int {
return Int(pow(Double(self), Double(p)))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
while n.power(power) <= x {
if n.power(power) == x {
return true
}
power += 1
}
return false
}
private extension Int {
func power(_ p: Int) -> Int {
return Int(pow(Double(self), Double(p)))
}
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 || n == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
while n.power(power) <= x {
if n.power(power) == x {
return true
}
power += 1
}
return false
}
private extension Int {
func power(_ n: Int) -> Int {
return Int(pow(Double(self), Double(n)))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var power = 0
while n.power(power) <= x {
if n.power(power) == x {
return true
}
power += 1
}
return false
}
private extension Int {
func power(_ n: Int) -> Int {
return Int(pow(Double(self), Double(n)))
}
}
```
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return pow(Double(c), 3.0) == Double(b)
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1/3)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1.0/3.0))
return c * c * c == b
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1/3))
return c * c * c == b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let b = a.magnitude
let c = Int(pow(Double(b), 1/3))
return c * c * c == b
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexChars = Set("0123456789ABCDEF")
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 }
return hexValues.filter { hexPrimes.contains($0) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexChars = Set("0123456789ABCDEF")
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 }
return hexValues.filter { hexPrimes.contains($0) }.count
}
```
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // consecutive statements on a line must be separated by ';'
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // cannot use optional chaining on non-optional value of type 'Bool'
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // expected expression
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // consecutive statements on a line must be separated by ';'
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexChars = Set("0123456789ABCDEF")
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 }
return hexValues.filter { hexPrimes.contains($0) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexChars = Set("0123456789ABCDEF")
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 }
return hexValues.filter { hexPrimes.contains($0) }.count
}
```
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // cannot use optional chaining on non-optional value of type 'Bool'
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // expected expression
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // consecutive statements on a line must be separated by ';'
let hexValues = num.map { hexChars.contains($0)? Int(String($0), radix: 16)! : 0 } // consecutive statements on a line must be separated by ';'
func hexKey(num: String) -> Int {
let hex = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
return num.filter { primes.contains(hex.firstIndex(of: $0)!) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hex = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
return num.filter { primes.contains(hex.firstIndex(of: $0)!) }.count
}
```
return num.filter { primes.contains(hex.firstIndex(of: $0)!) }.count // instance method 'contains' requires that 'String.Index' conform to 'Collection'
func hexKey(num: String) -> Int {
let hex = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hex.firstIndex(of: char)!
let digit = hex.distance(from: hex.startIndex, to: index)
if primes.contains(digit) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hex = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hex.firstIndex(of: char)!
let digit = hex.distance(from: hex.startIndex, to: index)
if primes.contains(digit) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexValues = num.map { Int(String($0), radix: 16)! }
return hexValues.filter { hexPrimes.contains($0) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexPrimes = Set([2, 3, 5, 7, 11, 13])
let hexValues = num.map { Int(String($0), radix: 16)! }
return hexValues.filter { hexPrimes.contains($0) }.count
}
```
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primeHexDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let hexDigit = hexString[index]
if primeHexDigits.contains(String(hexDigit)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primeHexDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let hexDigit = hexString[index]
if primeHexDigits.contains(String(hexDigit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString.distance(from: hexString.startIndex, to: index))
if primes.contains(digit) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString.distance(from: hexString.startIndex, to: index))
if primes.contains(digit) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexMap: [Character: Int] = ["0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "A": 10, "B": 11, "C": 12, "D": 13, "E": 14, "F": 15]
let primes = [2, 3, 5, 7, 11, 13, 17]
var count = 0
for char in num {
if let hexValue = hexMap[char] {
if primes.contains(hexValue) {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexMap: [Character: Int] = ["0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "A": 10, "B": 11, "C": 12, "D": 13, "E": 14, "F": 15]
let primes = [2, 3, 5, 7, 11, 13, 17]
var count = 0
for char in num {
if let hexValue = hexMap[char] {
if primes.contains(hexValue) {
count += 1
}
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString[index...index], radix: 16)!
if primes.contains(digit) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString[index...index], radix: 16)!
if primes.contains(digit) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString.distance(from: hexString.startIndex, to: index))
if primes.contains(digit) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexString = "0123456789ABCDEF"
let primes = [2, 3, 5, 7, 11, 13]
var count = 0
for char in num {
let index = hexString.firstIndex(of: char)!
let digit = Int(hexString.distance(from: hexString.startIndex, to: index))
if primes.contains(digit) {
count += 1
}
}
return count
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
return "db" + String(decimal, radix: 2) + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
return "db" + String(decimal, radix: 2) + "db"
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...(s.count - 3) {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...(s.count - 3) {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...(s.count - 3) {
let start = s.index(s.startIndex, offsetBy: i)
let end = s.index(s.startIndex, offsetBy: i + 3)
let substring = s[start..<end]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...(s.count - 3) {
let start = s.index(s.startIndex, offsetBy: i)
let end = s.index(s.startIndex, offsetBy: i + 3)
let substring = s[start..<end]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if Set(substring).count!= 3 {
return false
}
}
return true
}
```
if Set(substring).count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if Set(substring).count!= 3 { // '=' must have consistent whitespace on both sides
if Set(substring).count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var i = s.startIndex
while i < s.endIndex {
let substring = s[i..<s.index(i, offsetBy: 3)]
if Set(substring).count < 3 {
return false
}
i = s.index(i, offsetBy: 3)
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
var i = s.startIndex
while i < s.endIndex {
let substring = s[i..<s.index(i, offsetBy: 3)]
if Set(substring).count < 3 {
return false
}
i = s.index(i, offsetBy: 3)
}
return true
}
```
// Fatal error: String index is out of bounds
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else if gpa >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else if gpa >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else if gpa >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else if gpa >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let gpa where gpa > 3.7:
letterGrades.append("A")
case let gpa where gpa > 3.3:
letterGrades.append("A-")
case let gpa where gpa > 3.0:
letterGrades.append("B+")
case let gpa where gpa > 2.7:
letterGrades.append("B")
case let gpa where gpa > 2.3:
letterGrades.append("B-")
case let gpa where gpa > 2.0:
letterGrades.append("C+")
case let gpa where gpa > 1.7:
letterGrades.append("C")
case let gpa where gpa > 1.3:
letterGrades.append("C-")
case let gpa where gpa > 1.0:
letterGrades.append("D+")
case let gpa where gpa > 0.7:
letterGrades.append("D")
case let gpa where gpa > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let gpa where gpa > 3.7:
letterGrades.append("A")
case let gpa where gpa > 3.3:
letterGrades.append("A-")
case let gpa where gpa > 3.0:
letterGrades.append("B+")
case let gpa where gpa > 2.7:
letterGrades.append("B")
case let gpa where gpa > 2.3:
letterGrades.append("B-")
case let gpa where gpa > 2.0:
letterGrades.append("C+")
case let gpa where gpa > 1.7:
letterGrades.append("C")
case let gpa where gpa > 1.3:
letterGrades.append("C-")
case let gpa where gpa > 1.0:
letterGrades.append("D+")
case let gpa where gpa > 0.7:
letterGrades.append("D")
case let gpa where gpa > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
case 0.0:
letterGrades.append("E")
default:
letterGrades.append("Invalid GPA")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
switch gpa {
case 4.0:
letterGrades.append("A+")
case let x where x > 3.7:
letterGrades.append("A")
case let x where x > 3.3:
letterGrades.append("A-")
case let x where x > 3.0:
letterGrades.append("B+")
case let x where x > 2.7:
letterGrades.append("B")
case let x where x > 2.3:
letterGrades.append("B-")
case let x where x > 2.0:
letterGrades.append("C+")
case let x where x > 1.7:
letterGrades.append("C")
case let x where x > 1.3:
letterGrades.append("C-")
case let x where x > 1.0:
letterGrades.append("D+")
case let x where x > 0.7:
letterGrades.append("D")
case let x where x > 0.0:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
```
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2))) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
```
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2))) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
```
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2))) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
```
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2))) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2)
}
```
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2) // missing argument label 'n:' in call
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
} else {
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2)))
}
}
```
return 10 * startsOneEnds(n - 1) + 8 * Int(pow(10.0, Double(n - 2))) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2)
}
```
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2) // missing argument label 'n:' in call
return 10 * startsOneEnds(n - 1) + 9 * startsOneEnds(n - 2) // missing argument label 'n:' in call
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return 9 * startsOneEnds(n: n - 1)
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary += String(number % 2)
number /= 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary += String(number % 2)
number /= 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var number = N
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binaryString = ""
var number = N
while number > 0 {
binaryString = String(number % 2) + binaryString
number /= 2
}
return binaryString
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 1 && lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 1 && lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 == 0 && index % 2 == 1 {
sum += element
}
}
return sum
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { $0.sorted() }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { $0.sorted() }
return orderedWords.joined(separator: " ")
}
```
return orderedWords.joined(separator: " ") // cannot convert return expression of type 'JoinedSequence<[[String.Element]]>' (aka 'JoinedSequence<Array<Array<Character>>>') to return type 'String'
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { $0.sorted() }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { $0.sorted() }
return orderedWords.joined(separator: " ")
}
```
return orderedWords.joined(separator: " ") // cannot convert return expression of type 'JoinedSequence<[[String.Element]]>' (aka 'JoinedSequence<Array<Array<Character>>>') to return type 'String'
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { String($0.sorted()) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { String($0.sorted()) }.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello!!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort {
if $0.0!= $1.0 {
return $0.0 < $1.0
} else {
return $0.1 > $1.1
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort {
if $0.0!= $1.0 {
return $0.0 < $1.0
} else {
return $0.1 > $1.1
}
}
return coordinates
}
```
if $0.0!= $1.0 { // cannot force unwrap value of non-optional type 'Int'
if $0.0!= $1.0 { // '=' must have consistent whitespace on both sides
if $0.0!= $1.0 { // use of '=' in a boolean context, did you mean '=='?
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates = [(Int, Int)]()
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates = [(Int, Int)]()
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (coordinate1, coordinate2) -> Bool in
if coordinate1.0 < coordinate2.0 {
return true
} else if coordinate1.0 > coordinate2.0 {
return false
} else {
return coordinate1.1 > coordinate2.1
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (coordinate1, coordinate2) -> Bool in
if coordinate1.0 < coordinate2.0 {
return true
} else if coordinate1.0 > coordinate2.0 {
return false
} else {
return coordinate1.1 > coordinate2.1
}
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates = [(Int, Int)]()
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates = [(Int, Int)]()
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (first, second) -> Bool in
if first.0 < second.0 {
return true
} else if first.0 > second.0 {
return false
} else {
return first.1 > second.1
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (first, second) -> Bool in
if first.0 < second.0 {
return true
} else if first.0 > second.0 {
return false
} else {
return first.1 > second.1
}
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (first, second) -> Bool in
if first.0 == second.0 {
return first.1 > second.1
} else {
return first.0 < second.0
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (first, second) -> Bool in
if first.0 == second.0 {
return first.1 > second.1
} else {
return first.0 < second.0
}
}
return coordinates
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2)...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var coordinates: [(Int, Int)] = []
for (row, elements) in lst.enumerated() {
for (column, element) in elements.enumerated() {
if element == x {
coordinates.append((row, column))
}
}
}
coordinates.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return coordinates
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count == 0 {
return []
}
if array.count == 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = array.sorted(by: { $0 < $1 })
if sum % 2 == 0 {
return sortedArray.reversed()
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count == 0 {
return []
}
if array.count == 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = array.sorted(by: { $0 < $1 })
if sum % 2 == 0 {
return sortedArray.reversed()
}
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count < 2 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
if array.count <= 1 {
return array
}
let first = array[0]
let last = array[array.count - 1]
if (first + last) % 2 == 0 {
return array.sorted(by: >)
}
return array.sorted()
}
```
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted.append(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted.append(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let rotatedIndex = alphabet.index(index, offsetBy: 2)
encrypted += String(alphabet[rotatedIndex])
}
}
return encrypted
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1..<sortedList.count] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1..<sortedList.count] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
```
if element!= previousElement { // cannot force unwrap value of non-optional type 'Int'
if element!= previousElement { // '=' must have consistent whitespace on both sides
if element!= previousElement { // use of '=' in a boolean context, did you mean '=='?
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest == smallest? nil : nextSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest == smallest? nil : nextSmallest
}
```
return nextSmallest == smallest? nil : nextSmallest // consecutive statements on a line must be separated by ';'
return nextSmallest == smallest? nil : nextSmallest // consecutive statements on a line must be separated by ';'
return nextSmallest == smallest? nil : nextSmallest // cannot convert return expression of type 'Bool' to return type 'Int?'
return nextSmallest == smallest? nil : nextSmallest // expected expression
return nextSmallest == smallest? nil : nextSmallest // cannot use optional chaining on non-optional value of type 'Int'
return nextSmallest == smallest? nil : nextSmallest // 'nil' requires a contextual type
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest == smallest? nil : nextSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest == smallest? nil : nextSmallest
}
```
return nextSmallest == smallest? nil : nextSmallest // consecutive statements on a line must be separated by ';'
return nextSmallest == smallest? nil : nextSmallest // consecutive statements on a line must be separated by ';'
return nextSmallest == smallest? nil : nextSmallest // cannot convert return expression of type 'Bool' to return type 'Int?'
return nextSmallest == smallest? nil : nextSmallest // expected expression
return nextSmallest == smallest? nil : nextSmallest // cannot use optional chaining on non-optional value of type 'Int'
return nextSmallest == smallest? nil : nextSmallest // 'nil' requires a contextual type
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
```
if element!= previousElement { // cannot force unwrap value of non-optional type 'Int'
if element!= previousElement { // '=' must have consistent whitespace on both sides
if element!= previousElement { // use of '=' in a boolean context, did you mean '=='?
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
```
if element!= previousElement { // cannot force unwrap value of non-optional type 'Int'
if element!= previousElement { // '=' must have consistent whitespace on both sides
if element!= previousElement { // use of '=' in a boolean context, did you mean '=='?
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var smallest = sortedList[0]
for num in sortedList {
if num > smallest {
return num
}
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var smallest = sortedList[0]
for num in sortedList {
if num > smallest {
return num
}
}
return nil
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
var smallest = sortedList[0] // variable 'smallest' was never mutated; consider changing to 'let' constant
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
let num = lst[i]
if num < smallest {
nextSmallest = smallest
smallest = num
} else if num < nextSmallest {
nextSmallest = num
}
}
return nextSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var sortedList = lst.sorted()
var previousElement = sortedList[0]
for element in sortedList[1...] {
if element!= previousElement {
return element
}
previousElement = element
}
return nil
}
```
if element!= previousElement { // cannot force unwrap value of non-optional type 'Int'
if element!= previousElement { // '=' must have consistent whitespace on both sides
if element!= previousElement { // use of '=' in a boolean context, did you mean '=='?
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
let sortedList = lst.sorted()
var previousElement: Int?
for element in sortedList {
if previousElement!= nil && element > previousElement! {
return element
}
previousElement = element
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
let sortedList = lst.sorted()
var previousElement: Int?
for element in sortedList {
if previousElement!= nil && element > previousElement! {
return element
}
previousElement = element
}
return nil
}
```
if previousElement!= nil && element > previousElement! { // '=' must have consistent whitespace on both sides
if previousElement!= nil && element > previousElement! { // 'nil' is not compatible with expected argument type 'Bool'
if previousElement!= nil && element > previousElement! { // use of '=' in a boolean context, did you mean '=='?
if previousElement!= nil && element > previousElement! { // cannot assign value of type 'Bool' to type 'Int'
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
if lst[i] < nextSmallest {
if lst[i] < smallest {
nextSmallest = smallest
smallest = lst[i]
} else {
nextSmallest = lst[i]
}
}
}
return nextSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = lst[0]
var nextSmallest = lst[1]
for i in 2..<lst.count {
if lst[i] < nextSmallest {
if lst[i] < smallest {
nextSmallest = smallest
smallest = lst[i]
} else {
nextSmallest = lst[i]
}
}
}
return nextSmallest
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
var isBored = false
for char in S {
if char == "I" {
isBored = true
} else if char == "." || char == "!" || char == "?" {
if isBored {
boredoms += 1
}
isBored = false
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
var isBored = false
for char in S {
if char == "I" {
isBored = true
} else if char == "." || char == "!" || char == "?" {
if isBored {
boredoms += 1
}
isBored = false
}
}
return boredoms
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: { $0 == "." || $0 == "?" || $0 == "!" })
for sentence in sentences {
let words = sentence.split(whereSeparator: { $0 == " " })
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: { $0 == "." || $0 == "?" || $0 == "!" })
for sentence in sentences {
let words = sentence.split(whereSeparator: { $0 == " " })
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ["!", "?", "."])
return sentences.filter { $0.hasPrefix(" I") }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ["!", "?", "."])
return sentences.filter { $0.hasPrefix(" I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ["!", "?", "."])
return sentences.filter { $0.hasPrefix(" I") }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: ["!", "?", "."])
return sentences.filter { $0.hasPrefix(" I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "?" || $0 == "!"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "?" || $0 == "!"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "!" || $0 == "?"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "!" || $0 == "?"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "!" || $0 == "?"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "!" || $0 == "?"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: { $0 == "." || $0 == "?" || $0 == "!" })
for sentence in sentences {
let words = sentence.split(whereSeparator: { $0 == " " })
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: { $0 == "." || $0 == "?" || $0 == "!" })
for sentence in sentences {
let words = sentence.split(whereSeparator: { $0 == " " })
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func isBored(S: String) -> Int {
var boredoms = 0
var isBored = false
for char in S {
if char == "I" {
isBored = true
}
if char == "." || char == "!" || char == "?" {
if isBored {
boredoms += 1
}
isBored = false
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
var isBored = false
for char in S {
if char == "I" {
isBored = true
}
if char == "." || char == "!" || char == "?" {
if isBored {
boredoms += 1
}
isBored = false
}
}
return boredoms
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "?" || $0 == "!"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.split(whereSeparator: {
$0 == "." || $0 == "?" || $0 == "!"
})
for sentence in sentences {
let words = sentence.split(whereSeparator: {
$0 == " "
})
if words.first == "I" {
boredoms += 1
}
}
return boredoms
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x) || (y == sum - y) || (z == sum - z)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x) || (y == sum - y) || (z == sum - z)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z)
}
```
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if x == sum - x {
return true
}
if y == sum - y {
return true
}
if z == sum - z {
return true
}
return false
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && x.truncatingRemainder(dividingBy: 1) == 0) ||
(y == sum - y && y.truncatingRemainder(dividingBy: 1) == 0) ||
(z == sum - z && z.truncatingRemainder(dividingBy: 1) == 0)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z)
}
```
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == sum - x && Int(x) == x) || (y == sum - y && Int(y) == y) || (z == sum - z && Int(z) == z) // cannot convert value of type 'Double' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
encodedMessage += String(alphabet[index].uppercased())
} else {
encodedMessage += String(character)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
encodedMessage += String(alphabet[index].uppercased())
} else {
encodedMessage += String(character)
}
}
return encodedMessage
}
```
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // expression of type 'String.Index' is unused
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // consecutive statements on a line must be separated by ';'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message.lowercased() {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2
encodedMessage += String(vowels[newIndex])
} else {
encodedMessage += String(char)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message.lowercased() {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2
encodedMessage += String(vowels[newIndex])
} else {
encodedMessage += String(char)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // expected expression
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot use optional chaining on non-optional value of type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // consecutive statements on a line must be separated by ';'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // consecutive statements on a line must be separated by ';'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message.lowercased() {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2
encodedMessage += String(vowels[newIndex])
} else {
encodedMessage += String(char)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message.lowercased() {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2
encodedMessage += String(vowels[newIndex])
} else {
encodedMessage += String(char)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // cannot use optional chaining on non-optional value of type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // expected expression
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // consecutive statements on a line must be separated by ';'
let newIndex = index + 2 >= vowels.count? index + 2 - vowels.count : index + 2 // consecutive statements on a line must be separated by ';'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex
encodedMessage += String(vowels[newIndex])
}
} else if let index = alphabet.firstIndex(of: character) {
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex
encodedMessage += String(alphabet[newIndex])
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
```
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)?? vowels.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // expression of type 'String.Index' is unused
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // consecutive statements on a line must be separated by ';'
let newIndex = alphabet.index(index, offsetBy: 2, limitedBy: alphabet.endIndex)?? alphabet.endIndex // cannot use optional chaining on non-optional value of type 'String.Index'
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if vowels.contains(char) {
encodedMessage += String((char.asciiValue! + 2) % 26 + 97)
} else {
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased()
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if vowels.contains(char) {
encodedMessage += String((char.asciiValue! + 2) % 26 + 97)
} else {
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased()
}
}
return encodedMessage
}
```
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // consecutive statements on a line must be separated by ';'
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // result of call to 'uppercased()' is unused
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // consecutive statements on a line must be separated by ';'
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // expected expression
encodedMessage += char.isLowercase? char.uppercased() : char.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)
encodedMessage += String(alphabet[newIndex!])
}
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
if let index = vowels.firstIndex(of: character) {
let newIndex = vowels.index(index, offsetBy: 2, limitedBy: vowels.endIndex)
encodedMessage += String(alphabet[newIndex!])
}
} else {
encodedMessage += String(character)
}
}
return encodedMessage.uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiou"
let vowelMap = "aeiou".enumerated().reduce(into: [Character: Character]()) { result, vowel in
result[vowel.element] = vowels[(vowel.offset + 2) % vowels.count]
}
return message.map { character in
if character.isLetter {
return character.isLowercase? character.uppercased().first! : character.lowercased().first!
} else if let vowel = vowels.firstIndex(of: character.lowercased()), let mappedVowel = vowelMap[character.lowercased()] {
return mappedVowel
}
return character
}.map(String.init).joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
let vowelMap = "aeiou".enumerated().reduce(into: [Character: Character]()) { result, vowel in
result[vowel.element] = vowels[(vowel.offset + 2) % vowels.count]
}
return message.map { character in
if character.isLetter {
return character.isLowercase? character.uppercased().first! : character.lowercased().first!
} else if let vowel = vowels.firstIndex(of: character.lowercased()), let mappedVowel = vowelMap[character.lowercased()] {
return mappedVowel
}
return character
}.map(String.init).joined()
}
```
result[vowel.element] = vowels[(vowel.offset + 2) % vowels.count] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
return character.isLowercase? character.uppercased().first! : character.lowercased().first! // expected expression
return character.isLowercase? character.uppercased().first! : character.lowercased().first! // consecutive statements on a line must be separated by ';'
return character.isLowercase? character.uppercased().first! : character.lowercased().first! // cannot use optional chaining on non-optional value of type 'Bool'
return character.isLowercase? character.uppercased().first! : character.lowercased().first! // consecutive statements on a line must be separated by ';'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).map { Int(String($0))! }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).map { Int(String($0))! }
}
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrime = primes.max()?? 0 // integer literal is unused
let largestPrime = primes.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrime = primes.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.digits.reduce(0, +)
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
String(self).compactMap { Int(String($0)) }
}
}
```
let largestPrime = primes.max()?? 0 // integer literal is unused
let largestPrime = primes.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrime = primes.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
for i in 2...Int(sqrt(Double(num))) {
if num % i == 0 { return false }
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primes = lst.filter { isPrime($0) }
let largestPrime = primes.max()?? 0
let sumOfDigits = largestPrime.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
for i in 2...Int(sqrt(Double(num))) {
if num % i == 0 { return false }
}
return true
}
```
let largestPrime = primes.max()?? 0 // integer literal is unused
let largestPrime = primes.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrime = primes.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
let primeValues = lst.filter { isPrime($0) }
let largestPrimeValue = primeValues.max()?? 0
let sumOfDigits = largestPrimeValue.description.reduce(0) { $0 + Int(String($1))! }
return sumOfDigits
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
let largestPrimeValue = primeValues.max()?? 0 // consecutive statements on a line must be separated by ';'
let largestPrimeValue = primeValues.max()?? 0 // integer literal is unused
let largestPrimeValue = primeValues.max()?? 0 // cannot use optional chaining on non-optional value of type 'Int'
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
```
if primes.allSatisfy({ i % $0!= 0 }) { // cannot convert value of type '()' to closure result type 'Bool'
if primes.allSatisfy({ i % $0!= 0 }) { // cannot force unwrap value of non-optional type 'Int'
if primes.allSatisfy({ i % $0!= 0 }) { // '=' must have consistent whitespace on both sides
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
```
if primes.allSatisfy({ i % $0!= 0 }) { // cannot convert value of type '()' to closure result type 'Bool'
if primes.allSatisfy({ i % $0!= 0 }) { // cannot force unwrap value of non-optional type 'Int'
if primes.allSatisfy({ i % $0!= 0 }) { // '=' must have consistent whitespace on both sides
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
if primes.allSatisfy({ i % $0!= 0 }) {
primes.append(i)
}
}
return primes
}
```
if primes.allSatisfy({ i % $0!= 0 }) { // '=' must have consistent whitespace on both sides
if primes.allSatisfy({ i % $0!= 0 }) { // cannot force unwrap value of non-optional type 'Int'
if primes.allSatisfy({ i % $0!= 0 }) { // cannot convert value of type '()' to closure result type 'Bool'
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
if n <= 1 {
return []
}
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n <= 1 {
return []
}
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n == 2 {
return true
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
if n < 2 {
return []
}
var primes = [2]
for i in 3...n {
var isPrime = true
for prime in primes {
if i % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
if n < 2 {
return primes
}
var isPrime = [Bool](repeating: true, count: n)
isPrime[0] = false
isPrime[1] = false
for i in 2..<n {
if isPrime[i] {
primes.append(i)
for j in stride(from: i * i, to: n, by: i) {
isPrime[j] = false
}
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
if n < 2 {
return primes
}
var isPrime = [Bool](repeating: true, count: n)
isPrime[0] = false
isPrime[1] = false
for i in 2..<n {
if isPrime[i] {
primes.append(i)
for j in stride(from: i * i, to: n, by: i) {
isPrime[j] = false
}
}
}
return primes
}
```
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() {
count += 1
}
}
}
return count
}
extension Character {
func isUpperVowel() -> Bool {
return self == "A" || self == "E" || self == "I" || self == "O" || self == "U"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() {
count += 1
}
}
}
return count
}
extension Character {
func isUpperVowel() -> Bool {
return self == "A" || self == "E" || self == "I" || self == "O" || self == "U"
}
}
```
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() { // initializer for conditional binding must have Optional type, not 'Character'
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
let c = s[s.index(s.startIndex, offsetBy: i)]
if c == "A" || c == "E" || c == "I" || c == "O" || c == "U" {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
let c = s[s.index(s.startIndex, offsetBy: i)]
if c == "A" || c == "E" || c == "I" || c == "O" || c == "U" {
count += 1
}
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() {
count += 1
}
}
}
return count
}
extension Character {
func isUpperVowel() -> Bool {
return self == "A" || self == "E" || self == "I" || self == "O" || self == "U"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for i in 0..<s.count {
if i % 2 == 0 {
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() {
count += 1
}
}
}
return count
}
extension Character {
func isUpperVowel() -> Bool {
return self == "A" || self == "E" || self == "I" || self == "O" || self == "U"
}
}
```
if let c = s[s.index(s.startIndex, offsetBy: i)], c.isUpperVowel() { // initializer for conditional binding must have Optional type, not 'Character'
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && "AEIOU".contains(c) {
count += 1
}
}
return count
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ number: Double) -> Double {
return number < 0? -1 : 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ number: Double) -> Double {
return number < 0? -1 : 1
}
```
return number < 0? -1 : 1 // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return number < 0? -1 : 1 // integer literal is unused
return number < 0? -1 : 1 // cannot convert return expression of type 'Bool' to return type 'Double'
return number < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
return number < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Double'
return number < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
return number < 0? -1 : 1 // expected expression
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
if roundedValue - doubleValue == 0.5 {
return Int(roundedValue + sign(of: doubleValue))
}
return Int(roundedValue)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
if roundedValue - doubleValue == 0.5 {
return Int(roundedValue + sign(of: doubleValue))
}
return Int(roundedValue)
}
```
return Int(roundedValue + sign(of: doubleValue)) // cannot find 'sign' in scope
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ value: Double) -> Double {
return value < 0? -1 : 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ value: Double) -> Double {
return value < 0? -1 : 1
}
```
return value < 0? -1 : 1 // cannot convert return expression of type 'Bool' to return type 'Double'
return value < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
return value < 0? -1 : 1 // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return value < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
return value < 0? -1 : 1 // integer literal is unused
return value < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Double'
return value < 0? -1 : 1 // expected expression
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ value: Double) -> Double {
if value > 0 {
return 1
} else if value < 0 {
return -1
}
return 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded - number == 0.5 {
return Int(rounded + sign(number))
}
return Int(rounded)
}
func sign(_ value: Double) -> Double {
if value > 0 {
return 1
} else if value < 0 {
return -1
}
return 0
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
if roundedValue - doubleValue == 0.5 {
return Int(roundedValue + Double(roundedValue)/abs(roundedValue))
}
return Int(roundedValue)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
if roundedValue - doubleValue == 0.5 {
return Int(roundedValue + Double(roundedValue)/abs(roundedValue))
}
return Int(roundedValue)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
return Int(roundedValue)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let roundedValue = round(doubleValue)
return Int(roundedValue)
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = round(number)
if rounded > number {
return Int(rounded)
} else {
return Int(rounded - 1)
}
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
if stones % 2 == 0 {
stones += 2
} else {
stones += 1
}
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
if stones % 2 == 0 {
stones += 2
} else {
stones += 1
}
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
if stones % 2 == 0 {
stones += 2
} else {
stones += 1
}
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
if stones % 2 == 0 {
stones += 2
} else {
stones += 1
}
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var stones = n
var levels = [Int]()
while stones > 0 {
levels.append(stones)
stones += (n % 2) + 1
}
return levels
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ",").map { $0.trimmingCharacters(in:.whitespaces) }
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
let start = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let start = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let start = x % 2 == 0? x : x + 1 // expected expression
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in (x...y).reversed() {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in (x...y).reversed() {
if i % 2 == 0 {
return i
}
}
return -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
let start = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let start = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let start = x % 2 == 0? x : x + 1 // expected expression
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
func chooseNum(x: Int, y: Int) -> Int {
let min = x < y? x : y
let max = x > y? x : y
for i in (min...max).reversed() {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
let min = x < y? x : y
let max = x > y? x : y
for i in (min...max).reversed() {
if i % 2 == 0 {
return i
}
}
return -1
}
```
let min = x < y? x : y // expression of type 'Int' is unused
let min = x < y? x : y // cannot use optional chaining on non-optional value of type 'Int'
let min = x < y? x : y // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let min = x < y? x : y // expected expression
let min = x < y? x : y // consecutive statements on a line must be separated by ';'
let min = x < y? x : y // consecutive statements on a line must be separated by ';'
let max = x > y? x : y // expression of type 'Int' is unused
let max = x > y? x : y // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let max = x > y? x : y // cannot use optional chaining on non-optional value of type 'Int'
let max = x > y? x : y // consecutive statements on a line must be separated by ';'
let max = x > y? x : y // expected expression
let max = x > y? x : y // consecutive statements on a line must be separated by ';'
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let start = x % 2 == 0? x : x + 1
for i in stride(from: start, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
let start = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let start = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let start = x % 2 == 0? x : x + 1 // expected expression
let start = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
```
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let lower = x % 2 == 0? x : x + 1 // expected expression
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let lower = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let lower = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // expression of type 'Int' is unused
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // expected expression
let upper = y % 2 == 0? y : y - 1 // cannot use optional chaining on non-optional value of type 'Int'
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
```
let lower = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let lower = x % 2 == 0? x : x + 1 // expected expression
let lower = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // cannot use optional chaining on non-optional value of type 'Int'
let upper = y % 2 == 0? y : y - 1 // expected expression
let upper = y % 2 == 0? y : y - 1 // expression of type 'Int' is unused
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let lower = x % 2 == 0? x : x + 1
let upper = y % 2 == 0? y : y - 1
if lower > upper {
return -1
}
return upper
}
```
let lower = x % 2 == 0? x : x + 1 // expression of type 'Int' is unused
let lower = x % 2 == 0? x : x + 1 // expected expression
let lower = x % 2 == 0? x : x + 1 // cannot use optional chaining on non-optional value of type 'Int'
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let lower = x % 2 == 0? x : x + 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // consecutive statements on a line must be separated by ';'
let upper = y % 2 == 0? y : y - 1 // cannot use optional chaining on non-optional value of type 'Int'
let upper = y % 2 == 0? y : y - 1 // expected expression
let upper = y % 2 == 0? y : y - 1 // expression of type 'Int' is unused
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var maxEven = -1
for i in x...y {
if i % 2 == 0 {
maxEven = i
}
}
return maxEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var maxEven = -1
for i in x...y {
if i % 2 == 0 {
maxEven = i
}
}
return maxEven
}
```
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var biggestEven = -1
for i in x...y {
if i % 2 == 0 {
biggestEven = i
}
}
return biggestEven
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var biggestEven = -1
for i in x...y {
if i % 2 == 0 {
biggestEven = i
}
}
return biggestEven
}
```
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = avg.rounded()
return.success(String(roundedAvg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = avg.rounded()
return.success(String(roundedAvg, radix: 2))
}
```
let roundedAvg = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = avg.rounded()
let binaryString = String(roundedAvg, radix: 2)
return.success("0b\(binaryString)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = avg.rounded()
let binaryString = String(roundedAvg, radix: 2)
return.success("0b\(binaryString)")
}
```
let roundedAvg = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
return.success(String(roundedAvg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
return.success(String(roundedAvg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return.success("0b\(binaryString)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return.success("0b\(binaryString)")
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
return.success(String(avg, radix: 2))
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
return.success(String(roundedAvg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) ==.success("0b11")
roundedAvg(n: 7, m: 5) ==.failure(-1)
roundedAvg(n: 10, m: 20) ==.success("0b1111")
roundedAvg(n: 20, m: 33) ==.success("0b11010")
### Response:
```swift
extension Int: Error {
}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return.failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
return.success(String(roundedAvg, radix: 2))
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if!hasEvenDigit(num: num) {
result.append(num)
}
}
return result.sorted()
}
func hasEvenDigit(num: Int) -> Bool {
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return true
}
n = n / 10
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if!hasEvenDigit(num: num) {
result.append(num)
}
}
return result.sorted()
}
func hasEvenDigit(num: Int) -> Bool {
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return true
}
n = n / 10
}
return false
}
```
if!hasEvenDigit(num: num) { // expected expression, var, or let in 'if' condition
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for element in x {
if!hasEvenDigit(element) {
result.append(element)
}
}
return result.sorted()
}
func hasEvenDigit(_ number: Int) -> Bool {
var num = number
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
return true
}
num /= 10
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for element in x {
if!hasEvenDigit(element) {
result.append(element)
}
}
return result.sorted()
}
func hasEvenDigit(_ number: Int) -> Bool {
var num = number
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
return true
}
num /= 10
}
return false
}
```
if!hasEvenDigit(element) { // expected expression, var, or let in 'if' condition
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if!hasEvenDigit {
result.append(num)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if!hasEvenDigit {
result.append(num)
}
}
return result
}
```
if!hasEvenDigit { // expected expression, var, or let in 'if' condition
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if!hasEvenDigit {
result.append(num)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if!hasEvenDigit {
result.append(num)
}
}
return result
}
```
if!hasEvenDigit { // expected expression, var, or let in 'if' condition
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if!hasEvenDigit(num: num) {
result.append(num)
}
}
return result.sorted()
}
func hasEvenDigit(num: Int) -> Bool {
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return true
}
n = n / 10
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if!hasEvenDigit(num: num) {
result.append(num)
}
}
return result.sorted()
}
func hasEvenDigit(num: Int) -> Bool {
var n = num
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
return true
}
n = n / 10
}
return false
}
```
if!hasEvenDigit(num: num) { // expected expression, var, or let in 'if' condition
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { num in
var n = num
while n > 0 {
if n % 2 == 0 {
return false
}
n /= 10
}
return true
}.sorted()
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let result = reversedNumbers.map { numberNames[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let result = reversedNumbers.map { numberNames[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let names = reversedNumbers.map { number in
switch number {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return names
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let names = reversedNumbers.map { number in
switch number {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return names
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let replacedNumbers = reversedNumbers.map { numberNames[$0 - 1] }
return replacedNumbers
}
```
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted()
let reversedNumbers = sortedNumbers.reversed()
let numberNames = reversedNumbers.map { numberName(number: $0) }
return numberNames
}
func numberName(number: Int) -> String {
switch number {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
return n * factorial(n - 1)
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
}
return n + sumOfNumbers(n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
return n * factorial(n - 1)
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
}
return n + sumOfNumbers(n - 1)
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sum(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sum(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sum(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sum(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sum(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sum(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sum(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n + sum(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
return n * factorial(n - 1)
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
}
return n + sumOfNumbers(n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
return n * factorial(n - 1)
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
}
return n + sumOfNumbers(n - 1)
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n <= 1 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
if n == 1 {
return 1
} else {
return n + sumOfNumbers(n - 1)
}
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
if isPalindrome(i) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
func isPalindrome(_ n: Int) -> Bool {
var num = n
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
return reversed == n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
if isPalindrome(i) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
func isPalindrome(_ n: Int) -> Bool {
var num = n
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
return reversed == n
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversedNum = 0
while num > 0 {
reversedNum = reversedNum * 10 + num % 10
num /= 10
}
if reversedNum == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversedNum = 0
while num > 0 {
reversedNum = reversedNum * 10 + num % 10
num /= 10
}
if reversedNum == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversedNum = 0
while num > 0 {
reversedNum = reversedNum * 10 + num % 10
num /= 10
}
if reversedNum == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversedNum = 0
while num > 0 {
reversedNum = reversedNum * 10 + num % 10
num /= 10
}
if reversedNum == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let string = String(i)
if string == String(string.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let string = String(i)
if string == String(string.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
var num = i
var reversed = 0
while num > 0 {
reversed = reversed * 10 + num % 10
num /= 10
}
if reversed == i {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var temp = abs(num)
while temp > 0 {
sum += temp % 10
temp /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array {
func shifted(by n: Int) -> [Element] {
let shiftedIndex = n % count
return Array(self[shiftedIndex..<count] + self[0..<shiftedIndex])
}
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array where Element: Comparable {
func shifted(by offset: Int) -> [Element] {
var shiftedArr = self
for i in 0..<self.count {
shiftedArr[i] = self[(i + offset) % self.count]
}
return shiftedArr
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
let shiftedArr = arr.shifted(by: i)
if shiftedArr == sortedArr {
return true
}
}
return false
}
extension Array where Element: Comparable {
func shifted(by offset: Int) -> [Element] {
var shiftedArr = self
for i in 0..<self.count {
shiftedArr[i] = self[(i + offset) % self.count]
}
return shiftedArr
}
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2],..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
for i in 0..<arr.count {
if arr[i]!= sortedArr[i] {
return false
}
}
return true
}
```
if arr[i]!= sortedArr[i] { // '=' must have consistent whitespace on both sides
if arr[i]!= sortedArr[i] { // cannot force unwrap value of non-optional type 'Int'
if arr[i]!= sortedArr[i] { // use of '=' in a boolean context, did you mean '=='?
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = lst1.filter { $0 % 2 == 0 }.count
var oddCount = lst1.count - evenCount
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return evenCount == lst1.count? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = lst1.filter { $0 % 2 == 0 }.count
var oddCount = lst1.count - evenCount
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return evenCount == lst1.count? "YES" : "NO"
}
```
return evenCount == lst1.count? "YES" : "NO" // cannot use optional chaining on non-optional value of type 'Int'
return evenCount == lst1.count? "YES" : "NO" // string literal is unused
return evenCount == lst1.count? "YES" : "NO" // consecutive statements on a line must be separated by ';'
return evenCount == lst1.count? "YES" : "NO" // expected expression
return evenCount == lst1.count? "YES" : "NO" // consecutive statements on a line must be separated by ';'
return evenCount == lst1.count? "YES" : "NO" // cannot convert return expression of type 'Bool' to return type 'String'
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount -= 1
}
}
if evenCount == 0 {
return "YES"
}
return "NO"
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
histogram[word] = (histogram[word]?? 0) + 1
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
histogram[word] = (histogram[word]?? 0) + 1
}
return histogram
}
```
histogram[word] = (histogram[word]?? 0) + 1 // cannot convert value of type '(Int?, Int)' to expected argument type 'Int'
histogram[word] = (histogram[word]?? 0) + 1 // expected ',' separator
histogram[word] = (histogram[word]?? 0) + 1 // cannot use optional chaining on non-optional value of type 'Int'
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
```
if histogram[word]!= nil { // use of '=' in a boolean context, did you mean '=='?
if histogram[word]!= nil { // '=' must have consistent whitespace on both sides
if histogram[word]!= nil { // 'nil' cannot be assigned to type 'Int'
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
```
if histogram[word]!= nil { // use of '=' in a boolean context, did you mean '=='?
if histogram[word]!= nil { // 'nil' cannot be assigned to type 'Int'
if histogram[word]!= nil { // '=' must have consistent whitespace on both sides
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word]!= nil {
histogram[word]! += 1
} else {
histogram[word] = 1
}
}
return histogram
}
```
if histogram[word]!= nil { // use of '=' in a boolean context, did you mean '=='?
if histogram[word]!= nil { // '=' must have consistent whitespace on both sides
if histogram[word]!= nil { // 'nil' cannot be assigned to type 'Int'
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if let count = histogram[word] {
histogram[word] = count + 1
} else {
histogram[word] = 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
var maxCount = 0
for count in histogram.values {
if count > maxCount {
maxCount = count
}
}
var result = [String : Int]()
for (key, value) in histogram {
if value == maxCount {
result[key] = value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
var maxCount = 0
for count in histogram.values {
if count > maxCount {
maxCount = count
}
}
var result = [String : Int]()
for (key, value) in histogram {
if value == maxCount {
result[key] = value
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.components(separatedBy: " ")
var histogram = [String : Int]()
for word in words {
if histogram[word] == nil {
histogram[word] = 1
} else {
histogram[word]! += 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
var isPalindrome = true
for char in s {
if!c.contains(char) {
result.append(char)
}
}
for i in 0..<result.count / 2 {
if result[result.index(result.startIndex, offsetBy: i)]!= result[result.index(result.endIndex, offsetBy: -i - 1)] {
isPalindrome = false
break
}
}
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
var isPalindrome = true
for char in s {
if!c.contains(char) {
result.append(char)
}
}
for i in 0..<result.count / 2 {
if result[result.index(result.startIndex, offsetBy: i)]!= result[result.index(result.endIndex, offsetBy: -i - 1)] {
isPalindrome = false
break
}
}
return (result, isPalindrome)
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
if result[result.index(result.startIndex, offsetBy: i)]!= result[result.index(result.endIndex, offsetBy: -i - 1)] { // cannot force unwrap value of non-optional type 'Character'
if result[result.index(result.startIndex, offsetBy: i)]!= result[result.index(result.endIndex, offsetBy: -i - 1)] { // use of '=' in a boolean context, did you mean '=='?
if result[result.index(result.startIndex, offsetBy: i)]!= result[result.index(result.endIndex, offsetBy: -i - 1)] { // '=' must have consistent whitespace on both sides
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if!c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
if!c.contains(char) { // expected expression, var, or let in 'if' condition
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // cannot force unwrap value of non-optional type 'Int'
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // expression is not assignable: binary operator returns immutable value
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // cannot convert value of type '()' to closure result type 'Bool'
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // '=' must have consistent whitespace on both sides
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for str in lst {
var count = 0
for c in str {
if Int(String(c))! % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for str in lst {
var count = 0
for c in str {
if Int(String(c))! % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
return Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
return Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
return Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign value of type 'Bool' to type 'Int'
return Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign through '!': function call returns immutable value
return Int(String(char))!= nil && Int(String(char))! % 2 == 1 // 'nil' is not compatible with expected argument type 'Bool'
return Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot convert value of type '()' to closure result type 'Bool'
return Int(String(char))!= nil && Int(String(char))! % 2 == 1 // '=' must have consistent whitespace on both sides
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot convert value of type '()' to closure result type 'Bool'
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // 'nil' is not compatible with expected argument type 'Bool'
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // '=' must have consistent whitespace on both sides
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign through '!': function call returns immutable value
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign value of type 'Bool' to type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))!= nil && Int(String(char))! % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot convert value of type '()' to closure result type 'Bool'
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // 'nil' is not compatible with expected argument type 'Bool'
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // '=' must have consistent whitespace on both sides
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign through '!': function call returns immutable value
Int(String(char))!= nil && Int(String(char))! % 2 == 1 // cannot assign value of type 'Bool' to type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // cannot force unwrap value of non-optional type 'Int'
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // expression is not assignable: binary operator returns immutable value
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // cannot convert value of type '()' to closure result type 'Bool'
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // '=' must have consistent whitespace on both sides
let oddCount = $0.filter { Int(String($0)) % 2!= 0 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." }
}
```
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." } // cannot force unwrap value of non-optional type 'Int'
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." } // expression is not assignable: binary operator returns immutable value
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." } // '=' must have consistent whitespace on both sides
return lst.map { "the number of odd elements \($0.filter { Int(String($0)) % 2!= 0 }.count)n the str\($0.count)ng \($0.count) of the \($0.count)nput." } // cannot convert value of type '()' to closure result type 'Bool'
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
return Int(String(char)) % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
return Int(String(char)) % 2 == 1
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
return Int(String(char)) % 2 == 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = $0.filter { Int(String($0)) % 2 == 1 }.count // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var bucket = capacity
for well in row {
if well == 1 {
bucket -= 1
if bucket == 0 {
count += 1
bucket = capacity
}
}
}
if bucket!= capacity {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var bucket = capacity
for well in row {
if well == 1 {
bucket -= 1
if bucket == 0 {
count += 1
bucket = capacity
}
}
}
if bucket!= capacity {
count += 1
}
}
return count
}
```
if bucket!= capacity { // cannot force unwrap value of non-optional type 'Int'
if bucket!= capacity { // '=' must have consistent whitespace on both sides
if bucket!= capacity { // use of '=' in a boolean context, did you mean '=='?
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var current = capacity
for well in row {
if well == 1 {
current -= 1
} else {
current = capacity
}
if current == 0 {
count += 1
current = capacity
}
}
if current!= capacity {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var current = capacity
for well in row {
if well == 1 {
current -= 1
} else {
current = capacity
}
if current == 0 {
count += 1
current = capacity
}
}
if current!= capacity {
count += 1
}
}
return count
}
```
if current!= capacity { // '=' must have consistent whitespace on both sides
if current!= capacity { // cannot force unwrap value of non-optional type 'Int'
if current!= capacity { // use of '=' in a boolean context, did you mean '=='?
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var water = 0
for well in row {
if well == 1 {
water += 1
}
}
count += water / capacity
if water % capacity > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var water = 0
for well in row {
if well == 1 {
water += 1
}
}
count += water / capacity
if water % capacity > 0 {
count += 1
}
}
return count
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var sum = 0
for well in row {
sum += well
}
count += sum / capacity
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let aOnes = String($0, radix: 2).filter { $0 == "1" }.count
let bOnes = String($1, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
}
return aOnes < bOnes
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
let consonants = word.filter { c in
"bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains(c)
}
return consonants.count == n
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
let consonants = word.filter { c in
"bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains(c)
}
return consonants.count == n
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
if countConsonants(word) == n {
result.append(word)
}
}
return result
}
func countConsonants(_ word: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for letter in word.lowercased() {
if!vowels.contains(String(letter)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
if countConsonants(word) == n {
result.append(word)
}
}
return result
}
func countConsonants(_ word: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for letter in word.lowercased() {
if!vowels.contains(String(letter)) {
count += 1
}
}
return count
}
```
if!vowels.contains(String(letter)) { // expected expression, var, or let in 'if' condition
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(String(word))
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for c in word {
if "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains(c) {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for c in word {
if "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains(c) {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(String(word))
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var vowelIndex = -1
for i in (0..<word.count).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if!vowels.contains(char) {
return String(char)
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var vowelIndex = -1
for i in (0..<word.count).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if!vowels.contains(char) {
return String(char)
}
}
return ""
}
```
if!vowels.contains(char) { // expected expression, var, or let in 'if' condition
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let reversed = word.reversed()
var vowelIndex = -1
var consonantIndex = -1
for (index, char) in reversed.enumerated() {
if vowels.contains(char) {
vowelIndex = index
} else if vowelIndex!= -1 {
consonantIndex = index
break
}
}
if consonantIndex!= -1 {
return String(reversed[consonantIndex...vowelIndex])
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let reversed = word.reversed()
var vowelIndex = -1
var consonantIndex = -1
for (index, char) in reversed.enumerated() {
if vowels.contains(char) {
vowelIndex = index
} else if vowelIndex!= -1 {
consonantIndex = index
break
}
}
if consonantIndex!= -1 {
return String(reversed[consonantIndex...vowelIndex])
}
return ""
}
```
} else if vowelIndex!= -1 { // use of '=' in a boolean context, did you mean '=='?
} else if vowelIndex!= -1 { // cannot force unwrap value of non-optional type 'Int'
} else if vowelIndex!= -1 { // '=' must have consistent whitespace on both sides
if consonantIndex!= -1 { // use of '=' in a boolean context, did you mean '=='?
if consonantIndex!= -1 { // cannot force unwrap value of non-optional type 'Int'
if consonantIndex!= -1 { // '=' must have consistent whitespace on both sides
return String(reversed[consonantIndex...vowelIndex]) // subscript 'subscript(_:)' requires the types 'ReversedCollection<String>.Index' and 'Int' be equivalent
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var vowelIndex = -1
for i in (0..<word.count).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if!vowels.contains(char) {
return String(char)
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var vowelIndex = -1
for i in (0..<word.count).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
let char = word[word.index(word.startIndex, offsetBy: i)]
if!vowels.contains(char) {
return String(char)
}
}
return ""
}
```
if!vowels.contains(char) { // expected expression, var, or let in 'if' condition
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
for (index, char) in word.reversed().enumerated() {
let charString = String(char)
if vowels.contains(charString) {
closestVowel = charString
break
}
if index == word.count - 1 {
break
}
if!vowels.contains(String(word[word.index(word.endIndex, offsetBy: -index - 2)])) {
break
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
for (index, char) in word.reversed().enumerated() {
let charString = String(char)
if vowels.contains(charString) {
closestVowel = charString
break
}
if index == word.count - 1 {
break
}
if!vowels.contains(String(word[word.index(word.endIndex, offsetBy: -index - 2)])) {
break
}
}
return closestVowel
}
```
if!vowels.contains(String(word[word.index(word.endIndex, offsetBy: -index - 2)])) { // expected expression, var, or let in 'if' condition
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
let charString = String(char)
if vowels.contains(charString) {
if vowelFound {
closestVowel = charString
break
} else {
vowelFound = true
}
} else if vowelFound {
break
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
let charString = String(char)
if vowels.contains(charString) {
if vowelFound {
closestVowel = charString
break
} else {
vowelFound = true
}
} else if vowelFound {
break
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let reversedWord = String(word.reversed())
var vowelFound = false
var closestVowel = ""
for char in reversedWord {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if vowelFound {
break
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let reversedWord = String(word.reversed())
var vowelFound = false
var closestVowel = ""
for char in reversedWord {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if vowelFound {
break
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if consonants.contains(char) {
vowelFound = false
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if consonants.contains(char) {
vowelFound = false
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var vowelIndex = -1
for i in (0..<wordArray.count).reversed() {
if vowels.contains(wordArray[i]) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
if consonants.contains(wordArray[i]) {
return String(wordArray[vowelIndex])
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var vowelIndex = -1
for i in (0..<wordArray.count).reversed() {
if vowels.contains(wordArray[i]) {
vowelIndex = i
break
}
}
if vowelIndex == -1 {
return ""
}
for i in (0..<vowelIndex).reversed() {
if consonants.contains(wordArray[i]) {
return String(wordArray[vowelIndex])
}
}
return ""
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if consonants.contains(char) {
vowelFound = false
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var vowelFound = false
var closestVowel = ""
for char in word.reversed() {
if vowels.contains(char) {
if vowelFound {
closestVowel = String(char)
break
} else {
vowelFound = true
}
} else if consonants.contains(char) {
vowelFound = false
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var closestVowel = ""
for (index, character) in word.reversed().enumerated() {
if vowels.contains(character) {
closestVowel = String(character)
break
} else if index == word.count - 1 {
return ""
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
var closestVowel = ""
for (index, character) in word.reversed().enumerated() {
if vowels.contains(character) {
closestVowel = String(character)
break
} else if index == word.count - 1 {
return ""
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for ch in str {
if ch == "(" {
stack.append(ch)
} else if ch == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for str in lst {
for char in str {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
} else {
stack.removeLast()
}
}
}
}
return stack.isEmpty? "Yes" : "No"
}
```
return stack.isEmpty? "Yes" : "No" // expected expression
return stack.isEmpty? "Yes" : "No" // string literal is unused
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
return stack.isEmpty? "Yes" : "No" // cannot use optional chaining on non-optional value of type 'Bool'
return stack.isEmpty? "Yes" : "No" // consecutive statements on a line must be separated by ';'
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var maxHeap = Heap(sort: >)
for num in arr {
maxHeap.insert(num)
if maxHeap.count > k {
maxHeap.remove()
}
}
return maxHeap.elements
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var maxHeap = Heap(sort: >)
for num in arr {
maxHeap.insert(num)
if maxHeap.count > k {
maxHeap.remove()
}
}
return maxHeap.elements
}
```
var maxHeap = Heap(sort: >) // cannot find 'Heap' in scope
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for num in arr {
if result.count < k {
result.append(num)
result.sort()
continue
}
if num > result[0] {
result[0] = num
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for num in arr {
if result.count < k {
result.append(num)
result.sort()
continue
}
if num > result[0] {
result[0] = num
result.sort()
}
}
return result
}
```
// Fatal error: Index out of range
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
continue
}
if arr[i] > result[0] {
result[0] = arr[i]
}
}
return result.sorted(by: >)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
continue
}
if arr[i] > result[0] {
result[0] = arr[i]
}
}
return result.sorted(by: >)
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
} else {
if arr[i] > result[0] {
result[0] = arr[i]
}
}
result = result.sorted(by: >)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
} else {
if arr[i] > result[0] {
result[0] = arr[i]
}
}
result = result.sorted(by: >)
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort()
} else if arr[i] > result[0] {
result[0] = arr[i]
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort()
} else if arr[i] > result[0] {
result[0] = arr[i]
result.sort()
}
}
return result
}
```
// Fatal error: Index out of range
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort()
} else if arr[i] > result[0] {
result[0] = arr[i]
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort()
} else if arr[i] > result[0] {
result[0] = arr[i]
result.sort()
}
}
return result
}
```
// Fatal error: Index out of range
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort(by: >)
} else if arr[i] > result[k - 1] {
result[k - 1] = arr[i]
result.sort(by: >)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort(by: >)
} else if arr[i] > result[k - 1] {
result[k - 1] = arr[i]
result.sort(by: >)
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
} else {
if arr[i] > result[0] {
result[0] = arr[i]
}
}
result = result.sorted(by: >)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
} else {
if arr[i] > result[0] {
result[0] = arr[i]
}
}
result = result.sorted(by: >)
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort(by: >)
} else if arr[i] > result[k - 1] {
result[k - 1] = arr[i]
result.sort(by: >)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
result.sort(by: >)
} else if arr[i] > result[k - 1] {
result[k - 1] = arr[i]
result.sort(by: >)
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
continue
}
if arr[i] > result[0] {
result[0] = arr[i]
}
}
return result.sorted(by: >)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<arr.count {
if result.count < k {
result.append(arr[i])
continue
}
if arr[i] > result[0] {
result[0] = arr[i]
}
}
return result.sorted(by: >)
}
```
// XCTAssertTrue failed
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 == 1 {
sum += lst[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element >= 10 && element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element >= 10 && element < 100 {
sum += element
}
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num >= 0 && num <= 9 {
sum += num
} else if num >= 10 && num <= 99 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num >= 0 && num <= 9 {
sum += num
} else if num >= 10 && num <= 99 {
sum += num
}
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result.sorted()
}
```
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
while current!= 1 { // '=' must have consistent whitespace on both sides
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
while current!= 1 { // '=' must have consistent whitespace on both sides
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
while current!= 1 { // '=' must have consistent whitespace on both sides
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current!= 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
if current % 2 == 1 {
result.append(current)
}
}
result.append(1)
return result
}
```
while current!= 1 { // '=' must have consistent whitespace on both sides
while current!= 1 { // use of '=' in a boolean context, did you mean '=='?
while current!= 1 { // cannot force unwrap value of non-optional type 'Int'
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || month! < 1 || month! > 12 {
return false
}
if day == nil || day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || month! < 1 || month! > 12 {
return false
}
if day == nil || day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
```
if dateComponents.count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if dateComponents.count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if dateComponents.count!= 3 { // '=' must have consistent whitespace on both sides
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if month! == 2 {
if day! < 1 || day! > 29 {
return false
}
} else if [1, 3, 5, 7, 8, 10, 12].contains(month!) {
if day! < 1 || day! > 31 {
return false
}
} else if [4, 6, 9, 11].contains(month!) {
if day! < 1 || day! > 30 {
return false
}
} else {
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if month! == 2 {
if day! < 1 || day! > 29 {
return false
}
} else if [1, 3, 5, 7, 8, 10, 12].contains(month!) {
if day! < 1 || day! > 31 {
return false
}
} else if [4, 6, 9, 11].contains(month!) {
if day! < 1 || day! > 30 {
return false
}
} else {
return false
}
return true
}
```
if dateComponents.count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if dateComponents.count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if dateComponents.count!= 3 { // '=' must have consistent whitespace on both sides
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let date = dateFormatter.date(from: date) {
if dateFormatter.string(from: date) == date {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let date = dateFormatter.date(from: date) {
if dateFormatter.string(from: date) == date {
return true
}
}
return false
}
```
if dateFormatter.string(from: date) == date { // operator function '==' requires that 'Date' conform to 'StringProtocol'
func validDate(date: String) -> Bool {
let dateParts = date.split(separator: "-")
if dateParts.count!= 3 {
return false
}
let month = Int(dateParts[0])
let day = Int(dateParts[1])
let year = Int(dateParts[2])
if month == nil || month! < 1 || month! > 12 {
return false
}
if day == nil || day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateParts = date.split(separator: "-")
if dateParts.count!= 3 {
return false
}
let month = Int(dateParts[0])
let day = Int(dateParts[1])
let year = Int(dateParts[2])
if month == nil || month! < 1 || month! > 12 {
return false
}
if day == nil || day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
```
if dateParts.count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if dateParts.count!= 3 { // '=' must have consistent whitespace on both sides
if dateParts.count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
func validDate(date: String) -> Bool {
let dateParts = date.split(separator: "-")
if dateParts.count!= 3 {
return false
}
let month = Int(dateParts[0])
let day = Int(dateParts[1])
let year = Int(dateParts[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateParts = date.split(separator: "-")
if dateParts.count!= 3 {
return false
}
let month = Int(dateParts[0])
let day = Int(dateParts[1])
let year = Int(dateParts[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
```
if dateParts.count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if dateParts.count!= 3 { // '=' must have consistent whitespace on both sides
if dateParts.count!= 3 { // use of '=' in a boolean context, did you mean '=='?
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
if dateComponents.count!= 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 {
return false
}
switch month! {
case 1, 3, 5, 7, 8, 10, 12:
if day! > 31 {
return false
}
case 4, 6, 9, 11:
if day! > 30 {
return false
}
case 2:
if day! > 29 {
return false
}
default:
return false
}
return true
}
```
if dateComponents.count!= 3 { // use of '=' in a boolean context, did you mean '=='?
if dateComponents.count!= 3 { // cannot force unwrap value of non-optional type 'Int'
if dateComponents.count!= 3 { // '=' must have consistent whitespace on both sides
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - "a".asciiValue!)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - "a".asciiValue!)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
let asciiValue = Int(char.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterValue = Int(letter.asciiValue! - "a".asciiValue!)
if letterValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterValue = Int(letter.asciiValue! - "a".asciiValue!)
if letterValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
let letterValue = Int(letter.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddOrderLettersCount = 0
for letter in lowerCaseLetters {
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!)
if letterOrder % 2 == 1 {
oddOrderLettersCount += 1
}
}
return.failure(oddOrderLettersCount)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddOrderLettersCount = 0
for letter in lowerCaseLetters {
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!)
if letterOrder % 2 == 1 {
oddOrderLettersCount += 1
}
}
return.failure(oddOrderLettersCount)
}
}
```
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.split(separator: " ").map(String.init))
} else if txt.contains(",") {
return.success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let charValue = Int(char.asciiValue! - "a".asciiValue!)
if charValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.split(separator: " ").map(String.init))
} else if txt.contains(",") {
return.success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let charValue = Int(char.asciiValue! - "a".asciiValue!)
if charValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
let charValue = Int(char.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterValue = Int(letter.asciiValue! - "a".asciiValue!)
if letterValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterValue = Int(letter.asciiValue! - "a".asciiValue!)
if letterValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
let letterValue = Int(letter.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddLettersCount = 0
for letter in lowerCaseLetters {
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!)
if letterOrder % 2 == 1 {
oddLettersCount += 1
}
}
return.failure(oddLettersCount)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddLettersCount = 0
for letter in lowerCaseLetters {
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!)
if letterOrder % 2 == 1 {
oddLettersCount += 1
}
}
return.failure(oddLettersCount)
}
}
```
let letterOrder = Int(letter.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddLettersCount = 0
for letter in lowerCaseLetters {
let letterIndex = Int(letter.asciiValue! - "a".asciiValue!)
if letterIndex % 2 == 1 {
oddLettersCount += 1
}
}
return.failure(oddLettersCount)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var oddLettersCount = 0
for letter in lowerCaseLetters {
let letterIndex = Int(letter.asciiValue! - "a".asciiValue!)
if letterIndex % 2 == 1 {
oddLettersCount += 1
}
}
return.failure(oddLettersCount)
}
}
```
let letterIndex = Int(letter.asciiValue! - "a".asciiValue!) // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - 97)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - 97)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterIndex = Int(letter.asciiValue! - 97)
if letterIndex % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for letter in lowerCaseLetters {
let letterIndex = Int(letter.asciiValue! - 97)
if letterIndex % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
// XCTAssertTrue failed
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - 97)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1,... ord('z') = 25
Examples
splitWords(txt: "Hello world!") ==.success(["Hello", "world!"])
splitWords(txt: "Hello,world!") ==.success(["Hello", "world!"])
splitWords(txt: "abcdef") ==.failure(3)
### Response:
```swift
extension Int: Error {
}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return.success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return.success(txt.components(separatedBy: ","))
} else {
let lowerCaseLetters = txt.lowercased()
var count = 0
for char in lowerCaseLetters {
let asciiValue = Int(char.asciiValue! - 97)
if asciiValue % 2 == 1 {
count += 1
}
}
return.failure(count)
}
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
for num in lst[1...] {
if num < prev {
return false
}
if num == prev {
return false
}
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
for num in lst[1...] {
if num < prev {
return false
}
if num == prev {
return false
}
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var prev = Int.min
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
for i in 1..<lst.count {
if lst[i] < prev {
return false
}
if lst[i] == prev {
return false
}
prev = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
for i in 1..<lst.count {
if lst[i] < prev {
return false
}
if lst[i] == prev {
return false
}
prev = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count <= 1 {
return true
}
var prev = lst[0]
var seen = Set<Int>()
for num in lst {
if num < prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength < 2 {
return "NO"
}
if (2..<intersectionLength).allSatisfy({ intersectionLength % $0!= 0 }) {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength < 2 {
return "NO"
}
if (2..<intersectionLength).allSatisfy({ intersectionLength % $0!= 0 }) {
return "YES"
}
return "NO"
}
```
if (2..<intersectionLength).allSatisfy({ intersectionLength % $0!= 0 }) { // expression is not assignable: binary operator returns immutable value
if (2..<intersectionLength).allSatisfy({ intersectionLength % $0!= 0 }) { // '=' must have consistent whitespace on both sides
if (2..<intersectionLength).allSatisfy({ intersectionLength % $0!= 0 }) { // cannot force unwrap value of non-optional type 'Int'
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length <= 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length <= 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
if isPrime(number: intersectionLength) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
if isPrime(number: intersectionLength) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length <= 1 {
return "NO"
}
if isPrime(number: length) {
return "YES"
}
return "NO"
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number == 2 {
return true
}
if number % 2 == 0 {
return false
}
for i in stride(from: 3, through: Int(sqrt(Double(number))), by: 2) {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength <= 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard!arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num < 0? -1 : (num > 0? 1 : 0)
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard!arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num < 0? -1 : (num > 0? 1 : 0)
}
return sum * product
}
```
guard!arr.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
product *= num < 0? -1 : (num > 0? 1 : 0) // expected expression
product *= num < 0? -1 : (num > 0? 1 : 0) // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : (num > 0? 1 : 0) // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : (num > 0? 1 : 0) // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : (num > 0? 1 : 0) // integer literal is unused
product *= num < 0? -1 : (num > 0? 1 : 0) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : (num > 0? 1 : 0) // cannot convert value of type 'Bool' to expected argument type 'Int'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
product = 0
break
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return product * magnitudeSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
product = 0
break
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return product * magnitudeSum
}
```
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num > 0? 1 : -1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num > 0? 1 : -1
}
}
return sum * product
}
```
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
if num!= 0 { // '=' must have consistent whitespace on both sides
product *= num > 0? 1 : -1 // consecutive statements on a line must be separated by ';'
product *= num > 0? 1 : -1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num > 0? 1 : -1 // integer literal is unused
product *= num > 0? 1 : -1 // consecutive statements on a line must be separated by ';'
product *= num > 0? 1 : -1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num > 0? 1 : -1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num > 0? 1 : -1 // expected expression
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num!= 0 {
product *= num > 0? 1 : -1
}
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num!= 0 {
product *= num > 0? 1 : -1
}
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
```
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
if num!= 0 { // '=' must have consistent whitespace on both sides
product *= num > 0? 1 : -1 // expected expression
product *= num > 0? 1 : -1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num > 0? 1 : -1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num > 0? 1 : -1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num > 0? 1 : -1 // integer literal is unused
product *= num > 0? 1 : -1 // consecutive statements on a line must be separated by ';'
product *= num > 0? 1 : -1 // consecutive statements on a line must be separated by ';'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
product = 0
break
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return product * magnitudeSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
product = 0
break
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return product * magnitudeSum
}
```
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
```
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // '=' must have consistent whitespace on both sides
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
```
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // '=' must have consistent whitespace on both sides
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
func prodSigns(arr: [Int]) -> Int? {
guard!arr.isEmpty else { return nil }
var product = 1
var magnitudeSum = 0
for num in arr {
if num!= 0 {
product *= num < 0? -1 : 1
}
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard!arr.isEmpty else { return nil }
var product = 1
var magnitudeSum = 0
for num in arr {
if num!= 0 {
product *= num < 0? -1 : 1
}
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
```
guard!arr.isEmpty else { return nil } // expected expression, var, let or case in 'guard' condition
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // '=' must have consistent whitespace on both sides
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // integer literal is unused
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // expected expression
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
return 0
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var magnitudeSum = 0
for num in arr {
if num == 0 {
return 0
}
product *= num < 0? -1 : 1
magnitudeSum += abs(num)
}
return magnitudeSum * product
}
```
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num!= 0 {
product *= num < 0? -1 : 1
}
}
return sum * product
}
```
if num!= 0 { // cannot force unwrap value of non-optional type 'Int'
if num!= 0 { // '=' must have consistent whitespace on both sides
if num!= 0 { // use of '=' in a boolean context, did you mean '=='?
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // expected expression
product *= num < 0? -1 : 1 // consecutive statements on a line must be separated by ';'
product *= num < 0? -1 : 1 // cannot convert value of type 'Bool' to expected argument type 'Int'
product *= num < 0? -1 : 1 // cannot use optional chaining on non-optional value of type 'Int'
product *= num < 0? -1 : 1 // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
product *= num < 0? -1 : 1 // integer literal is unused
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
func dfs(row: Int, col: Int, path: [Int], length: Int) {
if length == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
return
}
for (nextRow, nextCol) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n {
dfs(row: nextRow, col: nextCol, path: path + [grid[nextRow][nextCol]], length: length + 1)
}
}
}
for row in 0..<n {
for col in 0..<n {
dfs(row: row, col: col, path: [grid[row][col]], length: 1)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
func dfs(row: Int, col: Int, path: [Int], length: Int) {
if length == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
return
}
for (nextRow, nextCol) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n {
dfs(row: nextRow, col: nextCol, path: path + [grid[nextRow][nextCol]], length: length + 1)
}
}
}
for row in 0..<n {
for col in 0..<n {
dfs(row: row, col: col, path: [grid[row][col]], length: 1)
}
}
return minPath
}
```
if minPath.isEmpty || path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathSum = Int.max
func dfs(grid: [[Int]], row: Int, col: Int, path: [Int], pathSum: Int, k: Int) {
if row < 0 || row >= grid.count || col < 0 || col >= grid[0].count {
return
}
path.append(grid[row][col])
pathSum += grid[row][col]
if path.count == k {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
dfs(grid: grid, row: row - 1, col: col, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row + 1, col: col, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row, col: col - 1, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row, col: col + 1, path: path, pathSum: pathSum, k: k)
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(grid: grid, row: row, col: col, path: [], pathSum: 0, k: k)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathSum = Int.max
func dfs(grid: [[Int]], row: Int, col: Int, path: [Int], pathSum: Int, k: Int) {
if row < 0 || row >= grid.count || col < 0 || col >= grid[0].count {
return
}
path.append(grid[row][col])
pathSum += grid[row][col]
if path.count == k {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
dfs(grid: grid, row: row - 1, col: col, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row + 1, col: col, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row, col: col - 1, path: path, pathSum: pathSum, k: k)
dfs(grid: grid, row: row, col: col + 1, path: path, pathSum: pathSum, k: k)
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(grid: grid, row: row, col: col, path: [], pathSum: 0, k: k)
}
}
return minPath
}
```
path.append(grid[row][col]) // cannot use mutating member on immutable value: 'path' is a 'let' constant
pathSum += grid[row][col] // left side of mutating operator isn't mutable: 'pathSum' is a 'let' constant
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
func dfs(currentRow: Int, currentCol: Int, currentPath: [Int], remainingSteps: Int) {
if remainingSteps == 0 {
if minPath.isEmpty || currentPath < minPath {
minPath = currentPath
}
return
}
for (row, col) in [(currentRow - 1, currentCol), (currentRow + 1, currentCol), (currentRow, currentCol - 1), (currentRow, currentCol + 1)] {
if row >= 0 && row < grid.count && col >= 0 && col < grid[0].count {
var newPath = currentPath
newPath.append(grid[row][col])
dfs(currentRow: row, currentCol: col, currentPath: newPath, remainingSteps: remainingSteps - 1)
}
}
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(currentRow: row, currentCol: col, currentPath: [grid[row][col]], remainingSteps: k - 1)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
func dfs(currentRow: Int, currentCol: Int, currentPath: [Int], remainingSteps: Int) {
if remainingSteps == 0 {
if minPath.isEmpty || currentPath < minPath {
minPath = currentPath
}
return
}
for (row, col) in [(currentRow - 1, currentCol), (currentRow + 1, currentCol), (currentRow, currentCol - 1), (currentRow, currentCol + 1)] {
if row >= 0 && row < grid.count && col >= 0 && col < grid[0].count {
var newPath = currentPath
newPath.append(grid[row][col])
dfs(currentRow: row, currentCol: col, currentPath: newPath, remainingSteps: remainingSteps - 1)
}
}
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(currentRow: row, currentCol: col, currentPath: [grid[row][col]], remainingSteps: k - 1)
}
}
return minPath
}
```
if minPath.isEmpty || currentPath < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
var minPathSum = Int.max
func dfs(row: Int, col: Int, path: [Int], pathSum: Int) {
if path.count == k {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if r >= 0 && r < n && c >= 0 && c < n &&!path.contains(grid[r][c]) {
dfs(row: r, col: c, path: path + [grid[r][c]], pathSum: pathSum + grid[r][c])
}
}
}
for row in 0..<n {
for col in 0..<n {
dfs(row: row, col: col, path: [grid[row][col]], pathSum: grid[row][col])
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
var minPathSum = Int.max
func dfs(row: Int, col: Int, path: [Int], pathSum: Int) {
if path.count == k {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if r >= 0 && r < n && c >= 0 && c < n &&!path.contains(grid[r][c]) {
dfs(row: r, col: c, path: path + [grid[r][c]], pathSum: pathSum + grid[r][c])
}
}
}
for row in 0..<n {
for col in 0..<n {
dfs(row: row, col: col, path: [grid[row][col]], pathSum: grid[row][col])
}
}
return minPath
}
```
if r >= 0 && r < n && c >= 0 && c < n &&!path.contains(grid[r][c]) { // expected '{' after 'if' condition
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
func dfs(grid: [[Int]], row: Int, col: Int, path: [Int], k: Int) {
if row < 0 || row >= grid.count || col < 0 || col >= grid[0].count {
return
}
path.append(grid[row][col])
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
} else {
dfs(grid: grid, row: row - 1, col: col, path: path, k: k)
dfs(grid: grid, row: row + 1, col: col, path: path, k: k)
dfs(grid: grid, row: row, col: col - 1, path: path, k: k)
dfs(grid: grid, row: row, col: col + 1, path: path, k: k)
}
path.removeLast()
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(grid: grid, row: row, col: col, path: [], k: k)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
func dfs(grid: [[Int]], row: Int, col: Int, path: [Int], k: Int) {
if row < 0 || row >= grid.count || col < 0 || col >= grid[0].count {
return
}
path.append(grid[row][col])
if path.count == k {
if minPath.isEmpty || path < minPath {
minPath = path
}
} else {
dfs(grid: grid, row: row - 1, col: col, path: path, k: k)
dfs(grid: grid, row: row + 1, col: col, path: path, k: k)
dfs(grid: grid, row: row, col: col - 1, path: path, k: k)
dfs(grid: grid, row: row, col: col + 1, path: path, k: k)
}
path.removeLast()
}
for row in 0..<grid.count {
for col in 0..<grid[0].count {
dfs(grid: grid, row: row, col: col, path: [], k: k)
}
}
return minPath
}
```
path.append(grid[row][col]) // cannot use mutating member on immutable value: 'path' is a 'let' constant
if minPath.isEmpty || path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
path.removeLast() // cannot use mutating member on immutable value: 'path' is a 'let' constant
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
dp[cell][1] = grid[i][j]
}
}
for length in 2...k {
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
for x in 0..<n {
for y in 0..<n {
let neighbor = x * n + y
if abs(x - i) + abs(y - j) == 1 {
dp[cell][length] = min(dp[cell][length], dp[neighbor][length - 1] + grid[i][j])
}
}
}
}
}
}
var minPath = [Int](repeating: 0, count: k)
var minValue = Int.max
var minIndex = 0
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
if dp[cell][k] < minValue {
minValue = dp[cell][k]
minIndex = cell
}
}
}
var cell = minIndex
for length in (1...k).reversed() {
minPath[length - 1] = grid[cell / n][cell % n]
for x in 0..<n {
for y in 0..<n {
let neighbor = x * n + y
if abs(x - cell / n) + abs(y - cell % n) == 1 && dp[neighbor][length - 1] + grid[x][y] == dp[cell][length] {
cell = neighbor
break
}
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
dp[cell][1] = grid[i][j]
}
}
for length in 2...k {
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
for x in 0..<n {
for y in 0..<n {
let neighbor = x * n + y
if abs(x - i) + abs(y - j) == 1 {
dp[cell][length] = min(dp[cell][length], dp[neighbor][length - 1] + grid[i][j])
}
}
}
}
}
}
var minPath = [Int](repeating: 0, count: k)
var minValue = Int.max
var minIndex = 0
for i in 0..<n {
for j in 0..<n {
let cell = i * n + j
if dp[cell][k] < minValue {
minValue = dp[cell][k]
minIndex = cell
}
}
}
var cell = minIndex
for length in (1...k).reversed() {
minPath[length - 1] = grid[cell / n][cell % n]
for x in 0..<n {
for y in 0..<n {
let neighbor = x * n + y
if abs(x - cell / n) + abs(y - cell % n) == 1 && dp[neighbor][length - 1] + grid[x][y] == dp[cell][length] {
cell = neighbor
break
}
}
}
}
return minPath
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathValue = [Int]()
for row in grid {
for value in row {
minPathValue.append(value)
}
}
for _ in 0..<k {
var minValue = Int.max
var minIndex = 0
for (index, value) in minPathValue.enumerated() {
if value < minValue {
minValue = value
minIndex = index
}
}
minPath.append(minIndex)
minPathValue[minIndex] = Int.max
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathValue = [Int]()
for row in grid {
for value in row {
minPathValue.append(value)
}
}
for _ in 0..<k {
var minValue = Int.max
var minIndex = 0
for (index, value) in minPathValue.enumerated() {
if value < minValue {
minValue = value
minIndex = index
}
}
minPath.append(minIndex)
minPathValue[minIndex] = Int.max
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let val = grid[i][j] - 1
dp[val][1] = min(dp[val][1], i + j)
}
}
for len in 2...k {
for i in 0..<n {
for j in 0..<n {
let val = grid[i][j] - 1
for x in 0..<n {
for y in 0..<n {
let prev = grid[x][y] - 1
if abs(x - i) + abs(y - j) == 1 {
dp[val][len] = min(dp[val][len], dp[prev][len - 1] + i + j)
}
}
}
}
}
}
var path = [Int]()
var i = 0
var j = 0
var len = k
while len > 0 {
let val = grid[i][j] - 1
path.append(val + 1)
len -= 1
if len == 0 {
break
}
var minDist = Int.max
var minX = 0
var minY = 0
for x in 0..<n {
for y in 0..<n {
let prev = grid[x][y] - 1
if abs(x - i) + abs(y - j) == 1 && dp[prev][len] + x + y < minDist {
minDist = dp[prev][len] + x + y
minX = x
minY = y
}
}
}
i = minX
j = minY
}
return path
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let val = grid[i][j] - 1
dp[val][1] = min(dp[val][1], i + j)
}
}
for len in 2...k {
for i in 0..<n {
for j in 0..<n {
let val = grid[i][j] - 1
for x in 0..<n {
for y in 0..<n {
let prev = grid[x][y] - 1
if abs(x - i) + abs(y - j) == 1 {
dp[val][len] = min(dp[val][len], dp[prev][len - 1] + i + j)
}
}
}
}
}
}
var path = [Int]()
var i = 0
var j = 0
var len = k
while len > 0 {
let val = grid[i][j] - 1
path.append(val + 1)
len -= 1
if len == 0 {
break
}
var minDist = Int.max
var minX = 0
var minY = 0
for x in 0..<n {
for y in 0..<n {
let prev = grid[x][y] - 1
if abs(x - i) + abs(y - j) == 1 && dp[prev][len] + x + y < minDist {
minDist = dp[prev][len] + x + y
minX = x
minY = y
}
}
}
i = minX
j = minY
}
return path
}
```
// Fatal error: Range requires lowerBound <= upperBound
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
for i in 0..<n {
for j in 0..<m {
if i == 0 && j == 0 {
dp[i][j] = grid[i][j]
} else {
for x in 0..<i {
for y in 0..<j {
if dp[x][y] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[x][y] + grid[i][j]
path[i][j] = x * m + y
}
}
}
for x in 0..<i {
if dp[x][j] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[x][j] + grid[i][j]
path[i][j] = x * m + j
}
}
for y in 0..<j {
if dp[i][y] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[i][y] + grid[i][j]
path[i][j] = i * m + y
}
}
}
}
}
var result = [Int]()
var i = n - 1
var j = m - 1
while i >= 0 && j >= 0 {
result.append(grid[i][j])
let p = path[i][j]
i = p / m
j = p % m
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
for i in 0..<n {
for j in 0..<m {
if i == 0 && j == 0 {
dp[i][j] = grid[i][j]
} else {
for x in 0..<i {
for y in 0..<j {
if dp[x][y] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[x][y] + grid[i][j]
path[i][j] = x * m + y
}
}
}
for x in 0..<i {
if dp[x][j] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[x][j] + grid[i][j]
path[i][j] = x * m + j
}
}
for y in 0..<j {
if dp[i][y] + grid[i][j] < dp[i][j] {
dp[i][j] = dp[i][y] + grid[i][j]
path[i][j] = i * m + y
}
}
}
}
}
var result = [Int]()
var i = n - 1
var j = m - 1
while i >= 0 && j >= 0 {
result.append(grid[i][j])
let p = path[i][j]
i = p / m
j = p % m
}
return result.reversed()
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let cell = grid[i][j]
let index = cell - 1
if i == 0 && j == 0 {
dp[index][1] = cell
} else {
for l in 1...k {
if dp[index][l] == Int.max {
continue
}
if i > 0 {
dp[index][l] = min(dp[index][l], dp[index - n][l])
}
if j > 0 {
dp[index][l] = min(dp[index][l], dp[index - 1][l])
}
if i < n - 1 {
dp[index][l] = min(dp[index][l], dp[index + n][l])
}
if j < n - 1 {
dp[index][l] = min(dp[index][l], dp[index + 1][l])
}
if l < k {
dp[index][l + 1] = min(dp[index][l + 1], dp[index][l])
}
}
}
}
}
var result = [Int]()
var index = 0
var l = k
while l > 0 {
result.append(dp[index][l])
if index > 0 && dp[index][l] == dp[index - 1][l] {
index -= 1
} else if index < n * n - 1 && dp[index][l] == dp[index + 1][l] {
index += 1
} else if index > n - 1 && dp[index][l] == dp[index - n][l] {
index -= n
} else if index < n * n - n && dp[index][l] == dp[index + n][l] {
index += n
} else {
l -= 1
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: k + 1), count: n * n)
for i in 0..<n {
for j in 0..<n {
let cell = grid[i][j]
let index = cell - 1
if i == 0 && j == 0 {
dp[index][1] = cell
} else {
for l in 1...k {
if dp[index][l] == Int.max {
continue
}
if i > 0 {
dp[index][l] = min(dp[index][l], dp[index - n][l])
}
if j > 0 {
dp[index][l] = min(dp[index][l], dp[index - 1][l])
}
if i < n - 1 {
dp[index][l] = min(dp[index][l], dp[index + n][l])
}
if j < n - 1 {
dp[index][l] = min(dp[index][l], dp[index + 1][l])
}
if l < k {
dp[index][l + 1] = min(dp[index][l + 1], dp[index][l])
}
}
}
}
}
var result = [Int]()
var index = 0
var l = k
while l > 0 {
result.append(dp[index][l])
if index > 0 && dp[index][l] == dp[index - 1][l] {
index -= 1
} else if index < n * n - 1 && dp[index][l] == dp[index + 1][l] {
index += 1
} else if index > n - 1 && dp[index][l] == dp[index - n][l] {
index -= n
} else if index < n * n - n && dp[index][l] == dp[index + n][l] {
index += n
} else {
l -= 1
}
}
return result.reversed()
}
```
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
if n < 3 {
return Array(sequence[0...n])
}
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
if n < 3 {
return Array(sequence[0...n])
}
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
if n < 0 {
return []
}
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
if n < 0 {
return []
}
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
if n <= 2 {
return Array(sequence[0...n])
}
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3, 2]
if n <= 2 {
return Array(sequence[0...n])
}
for i in 3...n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2!= 0 {
product *= digit
}
num /= 10
}
return product
}
```
if digit % 2!= 0 { // use of '=' in a boolean context, did you mean '=='?
if digit % 2!= 0 { // '=' must have consistent whitespace on both sides
if digit % 2!= 0 { // expression is not assignable: binary operator returns immutable value
if digit % 2!= 0 { // cannot force unwrap value of non-optional type 'Int'
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return!stack.isEmpty
}
```
return!stack.isEmpty // expected expression in 'return' statement
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
if stack.last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { Int($0) }.map { $0 * $0 }.reduce(0, +)
}
```
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharString = String(lastChar!)
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharString = String(lastChar!)
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString)
}
```
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString) // '=' must have consistent whitespace on both sides
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString) // cannot assign value of type 'Bool' to type 'Range<String.Index>'
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString) // cannot assign through '!': function call returns immutable value
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString) // 'nil' is not compatible with expected argument type 'Bool'
return lastCharString.rangeOfCharacter(from: CharacterSet.letters)!= nil && txt.hasSuffix(lastCharString) // use of '=' in a boolean context, did you mean '=='?
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
if let lastWord = words.last {
return lastWord.last == lastChar
}
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
if lastChar!.isLetter {
let words = txt.split(separator: " ")
return words.last?.last == lastChar
}
return false
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
if a > b {
return.intValue(a)
} else if b > a {
return.intValue(b)
}
case (.doubleValue(let a),.doubleValue(let b)):
if a > b {
return.doubleValue(a)
} else if b > a {
return.doubleValue(b)
}
case (.stringValue(let a),.stringValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(a.description)
} else if b > a {
return.stringValue(b.description)
}
} else {
if a > b {
return.stringValue(a)
} else if b > a {
return.stringValue(b)
}
}
case (.intValue(let a),.doubleValue(let b)):
if Double(a) > b {
return.doubleValue(b)
} else if b > Double(a) {
return.doubleValue(b)
}
case (.doubleValue(let a),.intValue(let b)):
if a > Double(b) {
return.doubleValue(a)
} else if Double(b) > a {
return.doubleValue(b)
}
case (.intValue(let a),.stringValue(let b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if Double(a) > b {
return.stringValue(b.description)
} else if b > Double(a) {
return.stringValue(b.description)
}
} else {
if a.description > b {
return.stringValue(b)
} else if b > a.description {
return.stringValue(b)
}
}
case (.stringValue(let a),.intValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
if a > Double(b) {
return.stringValue(a.description)
} else if Double(b) > a {
return.stringValue(a.description)
}
} else {
if a > b.description {
return.stringValue(a)
} else if b.description > a {
return.stringValue(a)
}
}
case (.doubleValue(let a),.stringValue(let b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(b.description)
} else if b > a {
return.stringValue(b.description)
}
} else {
if a.description > b {
return.stringValue(b)
} else if b > a.description {
return.stringValue(b)
}
}
case (.stringValue(let a),.doubleValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(a.description)
} else if b > a {
return.stringValue(a.description)
}
} else {
if a > b.description {
return.stringValue(a)
} else if b.description > a {
return.stringValue(a)
}
}
default:
return nil
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
if a > b {
return.intValue(a)
} else if b > a {
return.intValue(b)
}
case (.doubleValue(let a),.doubleValue(let b)):
if a > b {
return.doubleValue(a)
} else if b > a {
return.doubleValue(b)
}
case (.stringValue(let a),.stringValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(a.description)
} else if b > a {
return.stringValue(b.description)
}
} else {
if a > b {
return.stringValue(a)
} else if b > a {
return.stringValue(b)
}
}
case (.intValue(let a),.doubleValue(let b)):
if Double(a) > b {
return.doubleValue(b)
} else if b > Double(a) {
return.doubleValue(b)
}
case (.doubleValue(let a),.intValue(let b)):
if a > Double(b) {
return.doubleValue(a)
} else if Double(b) > a {
return.doubleValue(b)
}
case (.intValue(let a),.stringValue(let b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if Double(a) > b {
return.stringValue(b.description)
} else if b > Double(a) {
return.stringValue(b.description)
}
} else {
if a.description > b {
return.stringValue(b)
} else if b > a.description {
return.stringValue(b)
}
}
case (.stringValue(let a),.intValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
if a > Double(b) {
return.stringValue(a.description)
} else if Double(b) > a {
return.stringValue(a.description)
}
} else {
if a > b.description {
return.stringValue(a)
} else if b.description > a {
return.stringValue(a)
}
}
case (.doubleValue(let a),.stringValue(let b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(b.description)
} else if b > a {
return.stringValue(b.description)
}
} else {
if a.description > b {
return.stringValue(b)
} else if b > a.description {
return.stringValue(b)
}
}
case (.stringValue(let a),.doubleValue(let b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
if a > b {
return.stringValue(a.description)
} else if b > a {
return.stringValue(a.description)
}
} else {
if a > b.description {
return.stringValue(a)
} else if b.description > a {
return.stringValue(a)
}
}
default:
return nil
}
return nil
}
```
return.doubleValue(b) // cannot convert value of type 'Int' to expected argument type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case (.doubleValue(let a),.doubleValue(let b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case (.stringValue(let a),.stringValue(let b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case (.doubleValue(let a),.doubleValue(let b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case (.stringValue(let a),.stringValue(let b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case (.doubleValue(let a),.doubleValue(let b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case (.stringValue(let a),.stringValue(let b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case (.doubleValue(let a),.doubleValue(let b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case (.stringValue(let a),.stringValue(let b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
case let (.intValue(a),.doubleValue(b)):
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil)
case let (.doubleValue(a),.intValue(b)):
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil)
case let (.intValue(a),.stringValue(b)):
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil)
case let (.stringValue(a),.intValue(b)):
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil)
case let (.doubleValue(a),.stringValue(b)):
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil)
case let (.stringValue(a),.doubleValue(b)):
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a),.intValue(b)):
return a > b?.intValue(a) : (a < b?.intValue(b) : nil)
case let (.doubleValue(a),.doubleValue(b)):
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil)
case let (.stringValue(a),.stringValue(b)):
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil)
case let (.intValue(a),.doubleValue(b)):
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil)
case let (.doubleValue(a),.intValue(b)):
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil)
case let (.intValue(a),.stringValue(b)):
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil)
case let (.stringValue(a),.intValue(b)):
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil)
case let (.doubleValue(a),.stringValue(b)):
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil)
case let (.stringValue(a),.doubleValue(b)):
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil)
default:
return nil
}
}
```
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'intValue'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.intValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // expected expression
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of optional type 'String?' must be unwrapped to a value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // value of type 'String' has no member 'stringValue'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // cannot use optional chaining on non-optional value of type 'String'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.stringValue(a) : (a < b?.stringValue(b) : nil) // expected expression
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // expected expression
return a > b?.doubleValue(b) : (a < b?.intValue(a) : nil) // value of type 'Double' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // expected expression
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // value of type 'Int' has no member 'doubleValue'
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return a > b?.doubleValue(a) : (a < b?.intValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // consecutive statements on a line must be separated by ';'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // value of type 'Double' has no member 'stringValue'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // expected expression
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.intValue(a) : nil) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // value of type 'Int' has no member 'stringValue'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Int'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // expected expression
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.intValue(b) : nil) // consecutive statements on a line must be separated by ';'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // expected expression
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // value of type 'Double' has no member 'stringValue'
return a > Double(b)!?.stringValue(b) : (a < Double(b)!?.doubleValue(a) : nil) // consecutive statements on a line must be separated by ';'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // value of type 'Double' has no member 'stringValue'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // consecutive statements on a line must be separated by ';'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // cannot use optional chaining on non-optional value of type 'Double'
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // expected expression
return Double(a)! > b?.stringValue(a) : (Double(a)! < b?.doubleValue(b) : nil) // cannot convert return expression of type 'Bool' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)) where a > b:
return.intValue(a)
case (.doubleValue(let a),.doubleValue(let b)) where a > b:
return.doubleValue(a)
case (.stringValue(let a),.stringValue(let b)) where a > b:
return.stringValue(a)
case (.intValue(let a),.doubleValue(let b)) where Double(a) > b:
return.doubleValue(b)
case (.doubleValue(let a),.intValue(let b)) where a > Double(b):
return.doubleValue(a)
case (.intValue(let a),.stringValue(let b)) where Double(a) > Double(b.replacingOccurrences(of: ",", with: ".")):
return.stringValue(b)
case (.stringValue(let a),.intValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > Double(b):
return.stringValue(a)
case (.doubleValue(let a),.stringValue(let b)) where a > Double(b.replacingOccurrences(of: ",", with: ".")):
return.stringValue(b)
case (.stringValue(let a),.doubleValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > b:
return.stringValue(a)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be. or,
compareOne(a:.intValue(1), b:.doubleValue(2.5)) ==.doubleValue(2.5)
compareOne(a:.intValue(1), b:.stringValue("2,3")) ==.stringValue("2,3")
compareOne(a:.stringValue("5,1"), b:.stringValue("6")) ==.stringValue("6")
compareOne(a:.stringValue("1"), b:.intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a),.intValue(let b)) where a > b:
return.intValue(a)
case (.doubleValue(let a),.doubleValue(let b)) where a > b:
return.doubleValue(a)
case (.stringValue(let a),.stringValue(let b)) where a > b:
return.stringValue(a)
case (.intValue(let a),.doubleValue(let b)) where Double(a) > b:
return.doubleValue(b)
case (.doubleValue(let a),.intValue(let b)) where a > Double(b):
return.doubleValue(a)
case (.intValue(let a),.stringValue(let b)) where Double(a) > Double(b.replacingOccurrences(of: ",", with: ".")):
return.stringValue(b)
case (.stringValue(let a),.intValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > Double(b):
return.stringValue(a)
case (.doubleValue(let a),.stringValue(let b)) where a > Double(b.replacingOccurrences(of: ",", with: ".")):
return.stringValue(b)
case (.stringValue(let a),.doubleValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > b:
return.stringValue(a)
default:
return nil
}
}
```
case (.intValue(let a),.stringValue(let b)) where Double(a) > Double(b.replacingOccurrences(of: ",", with: ".")): // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
case (.stringValue(let a),.intValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > Double(b): // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
case (.doubleValue(let a),.stringValue(let b)) where a > Double(b.replacingOccurrences(of: ",", with: ".")): // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
case (.stringValue(let a),.doubleValue(let b)) where Double(a.replacingOccurrences(of: ",", with: ".")) > b: // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n < 8 {
return false
}
for a in 2...(n/4) {
for b in (a+1)...(n/4) {
for c in (b+1)...(n/4) {
for d in (c+1)...(n/4) {
if a + b + c + d == n {
return true
}
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in 1...n {
result *= i
}
return result
}
func brazilianFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (0...n).reversed() {
result *= specialFactorial(n: i)
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
var result = 1
for i in (1...n).reversed() {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let fixed = text.replacingOccurrences(of: " ", with: "_")
let components = fixed.components(separatedBy: "_")
let filtered = components.filter { $0!= "" }
return filtered.joined(separator: "-")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
let fixed = text.replacingOccurrences(of: " ", with: "_")
let components = fixed.components(separatedBy: "_")
let filtered = components.filter { $0!= "" }
return filtered.joined(separator: "-")
}
```
let filtered = components.filter { $0!= "" } // '=' must have consistent whitespace on both sides
let filtered = components.filter { $0!= "" } // cannot force unwrap value of non-optional type 'String'
let filtered = components.filter { $0!= "" } // cannot convert value of type '()' to closure result type 'Bool'
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result.append(character)
} else if spaceCount == 2 {
result.append("_")
} else {
result.append("-")
}
} else {
spaceCount = 0
result.append(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result.append(character)
} else if spaceCount == 2 {
result.append("_")
} else {
result.append("-")
}
} else {
spaceCount = 0
result.append(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for character in text {
if character == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount >= 3 {
result += "-"
}
} else {
spaceCount = 0
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += " "
} else if spaceCount == 2 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
spaceCount = 0
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if!["txt", "exe", "dll"].contains(extensionName) { // expected expression, var, or let in 'if' condition
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.isEmpty ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.isEmpty ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.isEmpty ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if!["txt", "exe", "dll"].contains(extensionName) { // expected expression, var, or let in 'if' condition
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.isEmpty ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.isEmpty ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.isEmpty ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0 >= "0" && $0 <= "9" }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0 >= "0" && $0 <= "9" }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String.Letter) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digitsCount = name.filter { $0.isDigit }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
extension String {
var isDigit: Bool {
return "0"..."9".contains(self)
}
var isLetter: Bool {
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased())
}
static var Letter: String {
return "a"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String.Letter) {
return "No"
}
if!["txt", "exe", "dll"].contains(extensionName) {
return "No"
}
let digitsCount = name.filter { $0.isDigit }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
extension String {
var isDigit: Bool {
return "0"..."9".contains(self)
}
var isLetter: Bool {
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased())
}
static var Letter: String {
return "a"
}
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String.Letter) { // expected '{' after 'if' condition
if!["txt", "exe", "dll"].contains(extensionName) { // expected expression, var, or let in 'if' condition
let digitsCount = name.filter { $0.isDigit }.count // value of type 'String.Element' (aka 'Character') has no member 'isDigit'
return "0"..."9".contains(self) // cannot convert return expression of type 'ClosedRange<String>' to return type 'Bool'
return "0"..."9".contains(self) // cannot convert value of type 'Bool' to expected argument type 'String'
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased()) // cannot convert value of type 'ClosedRange<String>' to expected argument type 'Bool'
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased()) // cannot convert value of type 'ClosedRange<String>' to expected argument type 'Bool'
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased()) // cannot convert value of type 'Bool' to expected argument type 'String'
return "a"..."z".contains(self.lowercased()) || "A"..."Z".contains(self.uppercased()) // cannot convert value of type 'Bool' to expected argument type 'String'
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digits = name.filter { $0.isNumber }
if digits.count > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count!= 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 ||!name.hasPrefix(String(name.first!)) {
return "No"
}
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" {
return "No"
}
let digitsCount = name.filter { $0.isNumber }.count
if digitsCount > 3 {
return "No"
}
return "Yes"
}
```
if components.count!= 2 { // cannot force unwrap value of non-optional type 'Int'
if components.count!= 2 { // use of '=' in a boolean context, did you mean '=='?
if components.count!= 2 { // '=' must have consistent whitespace on both sides
if name.count == 0 ||!name.hasPrefix(String(name.first!)) { // expected '{' after 'if' condition
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot assign value of type '()' to type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // use of '=' in a boolean context, did you mean '=='?
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot convert value of type 'String' to expected argument type 'Bool'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // cannot force unwrap value of non-optional type 'String'
if extensionName!= "txt" && extensionName!= "exe" && extensionName!= "dll" { // '=' must have consistent whitespace on both sides
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
let primeNumberSet = Set(primeNumbers)
let primeLengthWords = words.filter { primeNumberSet.contains($0.count) }
return primeLengthWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
let primeNumberSet = Set(primeNumbers)
let primeLengthWords = words.filter { primeNumberSet.contains($0.count) }
return primeLengthWords.joined(separator: " ")
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += "\(word) "
}
}
return result.trimmingCharacters(in:.whitespaces)
}
```
func simplify(x: String, n: String) -> Bool {
let xParts = x.components(separatedBy: "/")
let nParts = n.components(separatedBy: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.components(separatedBy: "/")
let nParts = n.components(separatedBy: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.components(separatedBy: "/")
let nParts = n.components(separatedBy: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.components(separatedBy: "/")
let nParts = n.components(separatedBy: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
```
while num!= 0 { // '=' must have consistent whitespace on both sides
while num!= 0 { // cannot force unwrap value of non-optional type 'Int'
while num!= 0 { // use of '=' in a boolean context, did you mean '=='?
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
```
while num!= 0 { // '=' must have consistent whitespace on both sides
while num!= 0 { // cannot force unwrap value of non-optional type 'Int'
while num!= 0 { // use of '=' in a boolean context, did you mean '=='?
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
```
while num!= 0 { // '=' must have consistent whitespace on both sides
while num!= 0 { // cannot force unwrap value of non-optional type 'Int'
while num!= 0 { // use of '=' in a boolean context, did you mean '=='?
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
```
while num!= 0 { // '=' must have consistent whitespace on both sides
while num!= 0 { // cannot force unwrap value of non-optional type 'Int'
while num!= 0 { // use of '=' in a boolean context, did you mean '=='?
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var num = num
while num!= 0 {
sum += num % 10
num /= 10
}
return sum
}
```
while num!= 0 { // '=' must have consistent whitespace on both sides
while num!= 0 { // cannot force unwrap value of non-optional type 'Int'
while num!= 0 { // use of '=' in a boolean context, did you mean '=='?
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sorted
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sorted
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String($0).reduce(0) { $0 + Int(String($1))! }
let sum2 = String($1).reduce(0) { $0 + Int(String($1))! }
if sum1 == sum2 {
return $0 < $1
}
return sum1 < sum2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted {
let sum1 = String($0).reduce(0) { $0 + Int(String($1))! }
let sum2 = String($1).reduce(0) { $0 + Int(String($1))! }
if sum1 == sum2 {
return $0 < $1
}
return sum1 < sum2
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { num1, num2 in
let sum1 = sumOfDigits(num: num1)
let sum2 = sumOfDigits(num: num2)
if sum1 == sum2 {
return num1 < num2
}
return sum1 < sum2
}
return sortedNums
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 == 1 && num / 10 % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for item in lst {
if item.count % 2 == 0 {
result.append(item)
}
}
result.sort { $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for item in lst {
if item.count % 2 == 0 {
result.append(item)
}
}
result.sort { $0.count < $1.count }
return result
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedStrings = evenLengthStrings.sorted { $0.count < $1.count }
return sortedStrings
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedStrings = evenLengthStrings.sorted { $0.count < $1.count }
return sortedStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var sortedList = lst.sorted(by: { $0.count < $1.count })
sortedList = sortedList.filter { $0.count % 2 == 0 }
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var sortedList = lst.sorted(by: { $0.count < $1.count })
sortedList = sortedList.filter { $0.count % 2 == 0 }
return sortedList
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { $0.count < $1.count }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { $0.count < $1.count }
return result
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
let sorted = filtered.sorted { $0.count < $1.count }
return sorted
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 { // use of '=' in a boolean context, did you mean '=='?
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 { // cannot force unwrap value of non-optional type 'Double'
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 { // '=' must have consistent whitespace on both sides
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 { // cannot assign value of type 'Bool' to type 'Double'
if num.truncatingRemainder(dividingBy: 2)!= 0 && num >= 0 { // integer literal value '0' cannot be used as a boolean; did you mean 'false'?
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 { // '=' must have consistent whitespace on both sides
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 { // use of '=' in a boolean context, did you mean '=='?
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 { // cannot assign value of type 'Bool' to type 'Double'
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 { // integer literal value '0' cannot be used as a boolean; did you mean 'false'?
if num.truncatingRemainder(dividingBy: 2)!= 0 && num > 0 { // cannot force unwrap value of non-optional type 'Double'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isFinite && num.rounded() == num && num > 0 {
if num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isFinite && num.rounded() == num && num > 0 {
if num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num == floor(num) {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 {
sum += Int(num * num)
}
}
return sum
}
```
// XCTAssertTrue failed
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smallCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smallCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smallCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smallCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smallCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smallCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smallCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smallCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1000
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = uppercaseCount - lowercaseCount
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestExtensionStrength = -1000
for extensionName in extensions {
let uppercaseLettersCount = extensionName.filter { $0.isUppercase }.count
let lowercaseLettersCount = extensionName.filter { $0.isLowercase }.count
let extensionStrength = uppercaseLettersCount - lowercaseLettersCount
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var j = 0
while j < bLength && a[a.index(a.startIndex, offsetBy: (i + j) % aLength)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == bLength {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var j = 0
while j < bLength && a[a.index(a.startIndex, offsetBy: (i + j) % aLength)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == bLength {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
for i in 0..<a.count {
if a.hasPrefix(b) {
return true
}
a.append(a.removeFirst())
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
for i in 0..<a.count {
if a.hasPrefix(b) {
return true
}
a.append(a.removeFirst())
}
return false
}
```
a.append(a.removeFirst()) // cannot use mutating member on immutable value: 'a' is a 'let' constant
a.append(a.removeFirst()) // cannot use mutating member on immutable value: 'a' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var rotationCount = 0
var isSubstring = true
for j in 0..<bLength {
if a[a.index(a.startIndex, offsetBy: (i + j) % aLength)]!= b[b.index(b.startIndex, offsetBy: j)] {
isSubstring = false
break
}
rotationCount += 1
}
if isSubstring {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var rotationCount = 0
var isSubstring = true
for j in 0..<bLength {
if a[a.index(a.startIndex, offsetBy: (i + j) % aLength)]!= b[b.index(b.startIndex, offsetBy: j)] {
isSubstring = false
break
}
rotationCount += 1
}
if isSubstring {
return true
}
}
return false
}
```
if a[a.index(a.startIndex, offsetBy: (i + j) % aLength)]!= b[b.index(b.startIndex, offsetBy: j)] { // use of '=' in a boolean context, did you mean '=='?
if a[a.index(a.startIndex, offsetBy: (i + j) % aLength)]!= b[b.index(b.startIndex, offsetBy: j)] { // cannot force unwrap value of non-optional type 'Character'
if a[a.index(a.startIndex, offsetBy: (i + j) % aLength)]!= b[b.index(b.startIndex, offsetBy: j)] { // '=' must have consistent whitespace on both sides
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<self.count {
let rotation = self.rotated(by: i)
rotations.append(rotation)
}
return rotations
}
func rotated(by n: Int) -> String {
let rotationIndex = self.index(self.startIndex, offsetBy: n)
let rotation = self[rotationIndex..<self.endIndex]
let remaining = self[self.startIndex..<rotationIndex]
return String(rotation) + String(remaining)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<self.count {
let rotation = self.rotated(by: i)
rotations.append(rotation)
}
return rotations
}
func rotated(by n: Int) -> String {
let rotationIndex = self.index(self.startIndex, offsetBy: n)
let rotation = self[rotationIndex..<self.endIndex]
let remaining = self[self.startIndex..<rotationIndex]
return String(rotation) + String(remaining)
}
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var rotationCount = 0
var j = i
while rotationCount < bLength {
if a[j]!= b[rotationCount] {
break
}
rotationCount += 1
j = (j + 1) % aLength
}
if rotationCount == bLength {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var rotationCount = 0
var j = i
while rotationCount < bLength {
if a[j]!= b[rotationCount] {
break
}
rotationCount += 1
j = (j + 1) % aLength
}
if rotationCount == bLength {
return true
}
}
return false
}
```
if a[j]!= b[rotationCount] { // use of '=' in a boolean context, did you mean '=='?
if a[j]!= b[rotationCount] { // cannot force unwrap value of non-optional type 'Character'
if a[j]!= b[rotationCount] { // '=' must have consistent whitespace on both sides
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
for i in 1..<b.count {
let rotated = String(b[b.index(b.startIndex, offsetBy: i)..<b.endIndex]) + String(b[b.startIndex..<b.index(b.startIndex, offsetBy: i)])
if a.contains(rotated) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
for i in 1..<b.count {
let rotated = String(b[b.index(b.startIndex, offsetBy: i)..<b.endIndex]) + String(b[b.startIndex..<b.index(b.startIndex, offsetBy: i)])
if a.contains(rotated) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
for i in 1..<b.count {
let rotated = String(b[b.index(b.startIndex, offsetBy: i)..<b.endIndex]) + String(b[b.startIndex..<b.index(b.startIndex, offsetBy: i)])
if a.contains(rotated) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
for i in 1..<b.count {
let rotated = String(b[b.index(b.startIndex, offsetBy: i)..<b.endIndex]) + String(b[b.startIndex..<b.index(b.startIndex, offsetBy: i)])
if a.contains(rotated) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let aCount = a.count
let bCount = b.count
if aCount < bCount {
return false
}
for i in 0..<aCount {
let substring = a[i..<aCount] + a[0..<i]
if substring.contains(b) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aCount = a.count
let bCount = b.count
if aCount < bCount {
return false
}
for i in 0..<aCount {
let substring = a[i..<aCount] + a[0..<i]
if substring.contains(b) {
return true
}
}
return false
}
```
let substring = a[i..<aCount] + a[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let substring = a[i..<aCount] + a[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
for i in 0..<a.count {
let substring = a[i..<a.count] + a[0..<i]
if substring.contains(b) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
for i in 0..<a.count {
let substring = a[i..<a.count] + a[0..<i]
if substring.contains(b) {
return true
}
}
return false
}
```
let substring = a[i..<a.count] + a[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let substring = a[i..<a.count] + a[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var j = 0
while j < bLength && a[a.index(a.startIndex, offsetBy: (i + j) % aLength)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == bLength {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aLength = a.count
let bLength = b.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
var j = 0
while j < bLength && a[a.index(a.startIndex, offsetBy: (i + j) % aLength)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == bLength {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = abs(num)
var evenCount = 0
var oddCount = 0
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
result += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
result += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
result += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
result += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["i", "v", "x", "l", "c", "d", "m"]
var result = ""
var num = number
for i in (0...6).reversed() {
let digit = num % 10
num /= 10
if digit == 9 {
result = "\(romanNumerals[i])\(romanNumerals[i+2])" + result
} else if digit == 4 {
result = "\(romanNumerals[i])\(romanNumerals[i+1])" + result
} else if digit >= 5 {
result = "\(romanNumerals[i+1])" + result
result = String(repeating: romanNumerals[i], count: digit - 5) + result
} else {
result = String(repeating: romanNumerals[i], count: digit) + result
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["i", "v", "x", "l", "c", "d", "m"]
var result = ""
var num = number
for i in (0...6).reversed() {
let digit = num % 10
num /= 10
if digit == 9 {
result = "\(romanNumerals[i])\(romanNumerals[i+2])" + result
} else if digit == 4 {
result = "\(romanNumerals[i])\(romanNumerals[i+1])" + result
} else if digit >= 5 {
result = "\(romanNumerals[i+1])" + result
result = String(repeating: romanNumerals[i], count: digit - 5) + result
} else {
result = String(repeating: romanNumerals[i], count: digit) + result
}
}
return result.lowercased()
}
```
// Fatal error: Index out of range
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var num = number
var result = ""
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while num >= arabicNumeral {
num -= arabicNumeral
result += romanNumerals[index]
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var num = number
var result = ""
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while num >= arabicNumeral {
num -= arabicNumeral
result += romanNumerals[index]
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var romanNumeral = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while remainingNumber >= arabicNumeral {
romanNumeral += romanNumerals[index]
remainingNumber -= arabicNumeral
}
}
return romanNumeral.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
let romanNumeral = romanNumerals[index]
while remainingNumber >= arabicNumeral {
result += romanNumeral
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var result = ""
var remainingNumber = number
for (index, arabicNumeral) in arabicNumerals.enumerated() {
let romanNumeral = romanNumerals[index]
while remainingNumber >= arabicNumeral {
result += romanNumeral
remainingNumber -= arabicNumeral
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var num = number
var result = ""
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while num >= arabicNumeral {
num -= arabicNumeral
result += romanNumerals[index]
}
}
return result.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["m", "cm", "d", "cd", "c", "xc", "l", "xl", "x", "ix", "v", "iv", "i"]
let arabicNumerals = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
var num = number
var result = ""
for (index, arabicNumeral) in arabicNumerals.enumerated() {
while num >= arabicNumeral {
num -= arabicNumeral
result += romanNumerals[index]
}
}
return result.lowercased()
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides.last!
let otherSides = sortedSides.dropLast()
return hypotenuse * hypotenuse == otherSides.map({ $0 * $0 }).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides.last!
let otherSides = sortedSides.dropLast()
return hypotenuse * hypotenuse == otherSides.map({ $0 * $0 }).reduce(0, +)
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides.last!
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides.last!
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let maxSide = max(a, max(b, c))
let otherSides = a + b + c - maxSide
if maxSide * maxSide == otherSides * otherSides {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let maxSide = max(a, max(b, c))
let otherSides = a + b + c - maxSide
if maxSide * maxSide == otherSides * otherSides {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides[2]
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides[2]
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides[2]
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
let hypotenuse = sortedSides[2]
let leg1 = sortedSides[0]
let leg2 = sortedSides[1]
return hypotenuse * hypotenuse == leg1 * leg1 + leg2 * leg2
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let maxSide = max(a, max(b, c))
let remainingSides = a + b + c - maxSide
if maxSide * maxSide == remainingSides * remainingSides {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let maxSide = max(a, max(b, c))
let remainingSides = a + b + c - maxSide
if maxSide * maxSide == remainingSides * remainingSides {
return true
}
return false
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sortedSides = [a, b, c].sorted()
return sortedSides[0] * sortedSides[0] + sortedSides[1] * sortedSides[1] == sortedSides[2] * sortedSides[2]
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueCount = 0
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxWord = word
maxUniqueCount = uniqueCount
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueCount = 0
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxWord = word
maxUniqueCount = uniqueCount
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCount = 0
var maxUniqueWord = ""
for word in words {
let uniqueCharacters = Set(word)
let uniqueCount = uniqueCharacters.count
if uniqueCount > maxUniqueCount {
maxUniqueCount = uniqueCount
maxUniqueWord = word
} else if uniqueCount == maxUniqueCount {
if word < maxUniqueWord {
maxUniqueWord = word
}
}
}
return maxUniqueWord
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueCount = 0
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxWord = word
maxUniqueCount = uniqueCount
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueCount = 0
for word in words {
let uniqueCount = Set(word).count
if uniqueCount > maxUniqueCount {
maxWord = word
maxUniqueCount = uniqueCount
} else if uniqueCount == maxUniqueCount {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + remaining
let remainingAfterMeals = totalEaten - need
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + remaining
let remainingAfterMeals = totalEaten - need
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // consecutive statements on a line must be separated by ';'
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // expected expression
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // consecutive statements on a line must be separated by ';'
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // expression of type 'Int' is unused
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let totalEatenAfterMeals = remainingAfterMeals > 0? totalEaten : totalEaten - remainingAfterMeals // cannot use optional chaining on non-optional value of type 'Int'
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals] // cannot convert value of type 'Bool' to expected element type 'Int'
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals] // expected ',' separator
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals] // cannot use optional chaining on non-optional value of type 'Int'
return [totalEatenAfterMeals, remainingAfterMeals > 0? 0 : -remainingAfterMeals] // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let left = remaining - need
return [eaten, max(left, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let remaining = remaining - min(need, remaining)
return [eaten, remaining]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let remaining = remaining - min(need, remaining)
return [eaten, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let remaining = remaining - min(need, remaining)
return [eaten, remaining]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let eaten = number + min(need, remaining)
let remaining = remaining - min(need, remaining)
return [eaten, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + remaining
let remainingAfterMeals = totalEaten - need
return [totalEaten, max(remainingAfterMeals, 0)]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + remaining
let remainingAfterMeals = totalEaten - need
return [totalEaten, max(remainingAfterMeals, 0)]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operators.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "//":
result /= operands[i]
case "**":
result = Int(pow(Double(result), Double(operands[i])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.contains(where: \.isLetter) { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.contains(where: \.isLetter) { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
contains(where: \.isLetter)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
contains(where: \.isLetter)
}
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.containsLetter { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.contains(where: \.isLetter) { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.contains(where: \.isLetter) { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
return contains { $0.isLetter }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
return contains { $0.isLetter }
}
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.containsLetter { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.contains(where: \.isLetter) {
return String(result.reversed())
}
return result
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.contains(where: \.isLetter) { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
contains { $0.isLetter }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
contains { $0.isLetter }
}
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.containsLetter { // expected expression, var, or let in 'if' condition
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension Character {
var isLetter: Bool {
return isLowercase || isUppercase
}
var isLowercase: Bool {
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil
}
var isUppercase: Bool {
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil
}
var lowercased: String {
return String(self).lowercased()
}
var uppercased: String {
return String(self).uppercased()
}
}
extension String {
var containsLetter: Bool {
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil
}
func reversed() -> String {
return String(reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension Character {
var isLetter: Bool {
return isLowercase || isUppercase
}
var isLowercase: Bool {
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil
}
var isUppercase: Bool {
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil
}
var lowercased: String {
return String(self).lowercased()
}
var uppercased: String {
return String(self).uppercased()
}
}
extension String {
var containsLetter: Bool {
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil
}
func reversed() -> String {
return String(reversed())
}
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.containsLetter { // expected expression, var, or let in 'if' condition
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil // '=' must have consistent whitespace on both sides
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil // use of '=' in a boolean context, did you mean '=='?
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil // cannot assign through '!': function call returns immutable value
return String(self).range(of: "[a-z]", options:.regularExpression)!= nil // 'nil' cannot be assigned to type 'Range<String.Index>'
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil // cannot assign through '!': function call returns immutable value
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil // 'nil' cannot be assigned to type 'Range<String.Index>'
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil // use of '=' in a boolean context, did you mean '=='?
return String(self).range(of: "[A-Z]", options:.regularExpression)!= nil // '=' must have consistent whitespace on both sides
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil // use of '=' in a boolean context, did you mean '=='?
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil // '=' must have consistent whitespace on both sides
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil // 'nil' cannot be assigned to type 'Range<String.Index>'
return range(of: "[a-zA-Z]", options:.regularExpression)!= nil // cannot assign through '!': function call returns immutable value
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
return contains { $0.isLetter }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for c in s {
if c.isLetter {
result += c.isLowercase? c.uppercased() : c.lowercased()
} else {
result += String(c)
}
}
if!result.containsLetter {
return String(result.reversed())
}
return result
}
extension String {
var containsLetter: Bool {
return contains { $0.isLetter }
}
}
```
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // consecutive statements on a line must be separated by ';'
result += c.isLowercase? c.uppercased() : c.lowercased() // expected expression
result += c.isLowercase? c.uppercased() : c.lowercased() // result of call to 'uppercased()' is unused
result += c.isLowercase? c.uppercased() : c.lowercased() // cannot use optional chaining on non-optional value of type 'Bool'
result += c.isLowercase? c.uppercased() : c.lowercased() // binary operator '+=' cannot be applied to operands of type 'String' and 'Bool?'
if!result.containsLetter { // expected expression, var, or let in 'if' condition
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
```
return data.md5().hexString // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = self.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) in
CC_MD5(bytes.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return self.map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
_ = self.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) in
CC_MD5(bytes.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return self.map { String(format: "%02hhx", $0) }.joined()
}
}
```
CC_MD5(bytes.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
if let data = text.data(using:.utf8) {
return data.md5().hexString
}
return nil
}
extension Data {
func md5() -> Data {
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
self.withUnsafeBytes {
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest)
}
return Data(digest)
}
var hexString: String {
return map { String(format: "%02hhx", $0) }.joined()
}
}
```
_ = CC_MD5($0.baseAddress, CC_LONG(self.count), &digest) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
let min = a < b? a : b
let max = a > b? a : b
var evenDigits = [Int]()
for i in min...max {
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
evenDigits.append(digit)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let min = a < b? a : b
let max = a > b? a : b
var evenDigits = [Int]()
for i in min...max {
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
evenDigits.append(digit)
}
}
}
return evenDigits.sorted()
}
```
let min = a < b? a : b // cannot use optional chaining on non-optional value of type 'Int'
let min = a < b? a : b // consecutive statements on a line must be separated by ';'
let min = a < b? a : b // expression of type 'Int' is unused
let min = a < b? a : b // consecutive statements on a line must be separated by ';'
let min = a < b? a : b // expected expression
let min = a < b? a : b // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let max = a > b? a : b // consecutive statements on a line must be separated by ';'
let max = a > b? a : b // expected expression
let max = a > b? a : b // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let max = a > b? a : b // cannot use optional chaining on non-optional value of type 'Int'
let max = a > b? a : b // consecutive statements on a line must be separated by ';'
let max = a > b? a : b // expression of type 'Int' is unused
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = String(number).compactMap { Int(String($0)) }
evenDigits.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = String(number).compactMap { Int(String($0)) }
evenDigits.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = String(value).compactMap { Int(String($0)) }
for digit in digits where digit % 2 == 0 {
evenDigits.append(digit)
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = String(value).compactMap { Int(String($0)) }
for digit in digits where digit % 2 == 0 {
evenDigits.append(digit)
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = Array(String(value))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = Array(String(value))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let min = Swift.min(a, b)
let max = Swift.max(a, b)
var evenDigits = [Int]()
for num in min...max {
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits where digit % 2 == 0 {
evenDigits.append(digit)
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let min = Swift.min(a, b)
let max = Swift.max(a, b)
var evenDigits = [Int]()
for num in min...max {
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits where digit % 2 == 0 {
evenDigits.append(digit)
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = String(value).compactMap { Int(String($0)) }
evenDigits.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for value in minValue...maxValue {
let digits = String(value).compactMap { Int(String($0)) }
evenDigits.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let minValue = min(a, b)
let maxValue = max(a, b)
var evenDigits = [Int]()
for number in minValue...maxValue {
let digits = Array(String(number))
for digit in digits {
if let digitValue = Int(String(digit)), digitValue % 2 == 0 {
evenDigits.append(digitValue)
}
}
}
return evenDigits.sorted()
}
```
// XCTAssertTrue failed