Metadata

Key Value
engine mlx
prompt completion
temp 0.2
top_p 0.95
max_new_tokens 1024
n_completions 10

Solutions

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
    var row = 0
    var row in 0..<
    
    0
    
    for i
    = 0
    for
    0
    for
    for
    for
    for
    for
    for
    for
    for
    for
    for
    row
    for
    var
    row
    row
col
col
col
    in
col
col
col
    in
col
    in
    0
    in
    in
    0
    in
    0
    0
    0
    in
    0
    in
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
        
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
    
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    for i inout
    
    var result
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    var result = [[Double]()
    for
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    for i in
    for i in 0..<
    for j in 0..<
    for
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    
    var result = [
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    var result = [String()
    var current = ""
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    
    
    
    var result = []
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    var result = [String(
    var stack
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    var result = [String
    
    
    for paren = [String()
    
    var stack
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    
    var result = [[Double](repepairsultipleased on {
    for i
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    var result =
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    
    var result = [[
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    guard let lhs = [[Double](repeating lhs = [[Double] = Double](
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance = 0
    for operation in operations.count
    
    balance = 0
    for operation
    balance
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    
    
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    var balance = 0
    for operation in operations = 0
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance = 0
    for i in
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    var sum = 0
    
    
    var sum = 0
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    
    var sum =
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    var sum = 0
    for i
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    var sum = 0
    for i = 0
    var mean = 0
    var mean
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    var sum = 0
    for i = 0
    var sum = 0
    for i
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    var result = [[Double]()
    var result = [
    for i in
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    
    var result = [
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    var result = [
    var result = [
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    var result = [Int.
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack =
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    var result = [Int
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    var stack = [Int.init()
    
    var stack = [Int
    
    for
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack = [
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    
    var stack = [Int.init()
    
    
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    
    
    var stack = [Int
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack = [
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    for (
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    var result = [[String]()
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
    for string in
    for string in
    
    
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    var sum = 0
    var sum = 0
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    var sum = 0
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    var
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    
    
    var sum = 0
    var sum = 0
    var product = 1
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max = [
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    var maxes = [Int.init()
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int.init()
    for i in
    for i in 0..<
    for i in 0..<numbers.count
    for
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max =
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max = [Int.init()
    for i in
    for i in 0..<
    var max
    var max
    
    for i
    var max
    max
    var
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    var maxesultimate
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
    
    var result = [[
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    var result = [Double.init()
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    return string = [
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    var result = [[Double]()
    for
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    
    
    var result = [[
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    var result = [[Double]()
    for (0
    for (0
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    var result = [[Double](repeekse
    for i in
    for (a
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    for i in
    
    
        
    var maxLength
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    
    guard strings.forEach {
        
        
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    for i in
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    guard let result = [[Double](repeeksegments = [[Double]
    
    
    
    
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    
    for i in Swift
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    for i in Swift.
    var result = [[Double](repe
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    for i in Swift.
    for i
    
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = []
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [String(
    for i in
    for i in 0..<
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    var result = [[Double]()
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [[Double]()
    for i in
    for
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = []
    for i = []
    
    for i
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    
    
    
    var result
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    
    
    for i in 0..<#1..<
    
    var result
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    for i in 0..
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [Double
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [[Double.
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [Double
    
    
    for i
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [[Double]()
    
    
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    var result = [[Double]
    for i in
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
    
    var result = [Int.init()
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int]()
    
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int.init()
    for character in musicString(musicString(musicString(musicString
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int()
    for char in music = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int.init(repeating: Int]()
    
    for character
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
    var result = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count =
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    var count = 0
    for i
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count =
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    return numbers = numbers = [String(numbers.split(
    
   .
    
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    
    var sorted
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    var sortedNumbers = [String(numbers
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    var result = [String(lazy
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    
    var result = ""
    
    
    
    
    
    
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    var sorted = [Double.init
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    var minDifference = Double.max = Double
    = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    
    var minDifference = Double.maxDifference = Double
    
    var min = Double
    var min = Double
    var min = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    var minDifference = Double, max
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    var minDifference = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    var min = [Double]
    return numbers.map(
    var min
    for
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    
    var min, max
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    var min = [Double]
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = []
    for value
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = [Int.init(repeektring
    for value in values.
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result =
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = [
    for value
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var filteredValues
    
    
    
    
    
    var result = [
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    
    return result = [[Double]
    for i in
    
    
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    var rowCount
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    
    var
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    var rowCount.init()
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
    for i in
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    var rowCount
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors = [Int.init()
    
    for i = []
    
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    
    for i in
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors = [Int.init()
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    for i in range =
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var factors = [
    for i = [Int](re
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    for i inout
    return [
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var factors = [Int.
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    var result = [
    for i in
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int.init
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int]
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    var result = [Int.
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    
    var result = [
    
    for i
    for i
    =
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
    
    for i in
    for i in 0..<
    var row in 0..< lhs
    result =
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    
    var result = [[Double]
    
    
    
    
    
    
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    var rowCount.
    var
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
    
    
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    
    
    
    var
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    var result = [[Double]
    
    
    for s
    
    
    
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    
    var result
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    var result = [String(
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    var positive = [[Double](repeekse
    for i
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    var result = []
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [
    for i in
    for i
    
    var
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in
    
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in
    
    for i in 0..
    
    
    0..
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i in 1..<
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i in 0..<code
    var i
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in 1..
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in 0..<
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    
    
    var result = [
    for (0..
    for i in 0..<
    for i in l
    l
    in 0..l
    
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in 0..< l.count {
    
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in 0..<lhs.count {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    
    for i in the result = [lhs
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in
    for
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    var result = [Int.repeektring l = l
    for i in 0
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i inout
    for i in 0..< l.count {
    if i < l.count {
    l
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    guard lhs = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double]()
    
    
    for i in
    
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    var
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    var row = [[Double](repeeksegments = [[Double](repelements = Double](repelements = Double](repelements
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double](repe
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    var result = [[Double](repeekse
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    for i in
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    var result = [[Double](repeekse
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    for i in
    
    var row in 0.. lhs
    
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    for i inout
    
    var result = [[
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    for i inout
    var result = [[Double](repe
    for i in l
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var fizz = [[Double
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    for i in
    
    for
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    var count = 0
    for i
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    return [
    var result =
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    var result = [
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    
    return l = [[Double]
    var result = [[Double]
    
    for
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    var matrix = [[Double](re
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    for i inout:
    for i in
    out
        for
        for j
        for k
        
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<
    for i
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    for i in 0..<
    for i in
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<|
    
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    
    var collisions = 0
    for
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    for i in 0..
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    
    var result = [[Double](re
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    var result =
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result = [[Double](repe
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double]
    for i in
    for i in 0..<
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result = [[Double]()
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    
    for i inout:
    for i in
    out
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    var result = [[Double]()
    for i in
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    for (i in 0..< lhs.forEach {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    var l = [[Double]
    for i in lhs = [Double]
    for i in 0..lhs = l
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    for i inout:
    for i in
    for
    for
        out
        for j
        for
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<
    for i in 0..< l.count {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    
    var result = [
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    var result = [[Double](repep = [[Double]
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
    var result = [[
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    var result = [[Double
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
    var result = [[Double](repepairsed
    for
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
    switch n
    guard n
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    var fib4(n:
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
    switch n:
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    
    var l = [[
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    var result = [[Double]()
    for i in
    
Double](repe
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    
    var result
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    
    var result =
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result =
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
Double](
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[Double]()
    for i in
    for
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[Double](repeekse
    for i in
    for
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    
    var result = [[Double]
    for i in
    for i in
    
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    var result = [[Double
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    var result = [[Double](repeek
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    for i inout
    
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    var newText = ""
    for c in text =
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    var result = ""
    for c in text = ""
    for char
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    
    var result = [[Double]
    for i
    for i in 0
    for
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    var result = [[Double.
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    guard l
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    for i in 0..<
    for c in 0..<text.count {
    if
    if
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    
    
    
    var result = [[Double]
    for i
    
    
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    for i in
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    for i in
    return l
    var row =
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    for i in 0
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    var result = [[Double
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    for i in 0..<
    for i
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    for i in
    
        
    var row
    
    var
    var
    var
    
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments
    for i in lhs = [[
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    for i in lhs = [[Double]
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    var result = [[
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    
    for i
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    
    
    return true
    for i
    for i
    for i in 0
    for i
    for
    for
    for
    for
    for
    for
    
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    for i in
    for i in
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    var result = [String {
    for i
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    
    
    return s1
    for i in s1
    for i in s1
    for i
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    var result = [String {
    for i in
    var result
    for
    for
    
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
    for i in 0..<Double]
    for i in 0
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    
    var result
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    guard let rows = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double]
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [[Double]
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
    var
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double]
    for (Double]
    
    var stack = [
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    var result = [[Double](repeekse
    for i in 0..<Double](repe
    
    
    for i in 0..<
    
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    
    
    var result = [[Double]
    for i in
    for i in 0..<
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    for i in
    for i in 0.. l
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    for i inout
    for i in
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    var result = [[Double
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    var result = [Double]()
    for (
    for i in l1
    
    
    
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    var set.union(l1
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int.init(repeekt
    for i in l1
    for i in l1
    for i in l1
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    var result = [Int()
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    guard l1
    guard l1
    let count
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    
    
    var result = [Int](
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    for i in theProduct(
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double]
    for i in
    
    for i in 0..<
    0..
    =
    =
    =
    
    =
    =
    =
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    for i in range(0..<
    var i in 0..<
    < n
    
    
    
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    for i in 0..<#^
    var i in
    
    
    var i
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    for i in 0..<#1..< lhs.map {
    // Initialize the
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
    
    
    
    
    
    var result
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [Double
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double
    
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
    var stack = [Double
    var stack =
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [Double]
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double
    
    var stack = [Double]()
    
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    var
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    
    var result =
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    var result = [Int.
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    var
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    var result = [0..
    for i in 0..<xs = [0..<
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    var result = [[Double](repeeksegments = [[Double](repe
    
    
    Double](repeating
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    var a = [[Double](repe
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    var fibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    
    var fibfibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    var fibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    
    var count = 0
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count = 0
    
    for c
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    
    guard let digits
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    var digits = [Double](
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    
    var digits = ""
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    var digits = [Double.init
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var sum = 0
    for i
    var sum = 0
    for
    0
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var result = 0
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    var sum = 0
    for c
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    var result = 0
    for i = 0
    for c
    for i
    0
    for
    for
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var sum = 0
    
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    
    
    
    
    
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    guard let arr = s.split {
    let arr = s.split {
    let arr = s.components = s.components(s.components(ofString.components(ofString.components(separated
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    
    
    
    
    
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 */
    
    var result = [
    return [
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
    
    var result = [Int
    var result = [
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 return the first the first the first the first the first the first the first node with the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
    return the first the first the first the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 */
    
    
    
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 return the first the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
    
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
    var max = -1
    for i in
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var count = [Int.init(repeekt = 0
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var max = -1
    for i in lst = 0
    for i in 0, count = 0, count in lst
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var max = 0
    var count = 0
    for i
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
    
    var result
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
    var result = [
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    var result = [Int(repe
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    guard a = Double(a, b = Double(Double(Double(a
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    
    
    guard let a = [[Double](
    
    
 Double]()
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    guard a =
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
        
        [
        [
        [
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
        
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    guard q:
    guard q:
    guard q.count == q.count == 2
    guard q
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
    
        
        
        
        
        
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    guard q: Double, Double](q: Double](q: [
 Double](q: [
 Double](q: Double](q
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    guard q:
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    for i in 0..arr.count = arr.count {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    var min = 0
    for i = 0
    for i = arr = 0
    for i = arr = arr.count
    arr.count
    arr.count
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    
    var count = 0
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var count = 0
    for
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    var count = 0
    for i = 0
    
    var
    for i
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var count
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    var min = 0
    
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    var result = [
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    for i in 0..<#
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    
    
    for i in 0..
    
    
    
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    for i in
    
        
    var result = [[Double
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    
    
    
    
    
    
    for
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i in 0..<
    for i in 0..<n
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i inout:
    return true
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    for i in 0..<Double]
    var i in 0..<n {
    if x = 1
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i inout
    for i in
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    
    for i in
    var i
    
    var
    var
    var
    
    
    var
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    for i inout
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    for i in
    
    
    var result =
    var
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout:
    
    
    
    
    
    
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout
    
    
    
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    return
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    return 0
    
    return 0
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    var count =
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    return nums = 3
    var count = 0
    for i = 0
    var count
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    
    
    return nums = 2
    return num = 2
    return num = 2
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
 */
    
    
    
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    
    
    var binary =
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    var binary = String()
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    var binary = ""
    
    
    
    for i
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    var binaryString(repep = ""
    
    
    
    var binary = ""
    for i = ""
    var remainder = ""
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    var binary = ""
    var binary = ""
    while decimal = ""
    dec
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    var binaryString(repep
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    var binary = ""
    
    
    
    
    
    
    var remainder = decimal =
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    var binary = ""
    
    
    
    
    
    
    
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    
    var result = [String(s
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    for i in
    var arr = [Int
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    for i in
    for i in 0
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    for i in 0..< s.count {
    for
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    var result = [String(repeektring = [String]()
    
    for i in s.enumerator
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 return ["A+
    
 */
    
    
    
    
    
    return grades = [
    return ["
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
    
    
    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */

    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
    
    
    
    
    var
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */
    
    
    
    
    
    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */

    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments = [Double
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
    var result = [[Double](
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double](repeektring
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    var result = [[Double]()
    for i in
    
    
    
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeekwraisesultiplets.
    for i in 0..<Double
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    var result
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    var result = [[Double]()
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    
    var result = [[Double]
    var result = [[Double]()
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    
    var result = [[Double
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double](
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    
    var result = [[Double](repeekw
    for (0
    
    for i in 0
    
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var sum = 0
    for i = 0
    var i = 0
    0
    for i
    0
    for
    = 0
    var
    0
    var
    for
    var
    var
    var
    var
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    for word in s in s in s.enumerate(s.split(s.enumerate(s
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    var result = ""
    
    for word
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    var result = ""
    
    for word in
    for word in s
    in
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    
    return [] as [Int,

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return lst, 1, 1, 1)
    return []

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return []
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return []

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    var result = [
    var result = [
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    var sortedArray(
    
    
    
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    var sortedArray(
    var result = array = array
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    
    
    
    
    var
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    var sortedArray(reversed(array:
    
    
    var sorted(
    var result = array = array = array
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var encrypted = ""
    for i
    for i
    
    var
    var
    for
    
    var
    
    var
    var
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var result = [
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    var encrypted = ""
    
    for i
    for i
    
        
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var encrypted = ""
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst.count =
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst = l
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    guard lst
    
    guard lst
    
    
    
    
    
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    var smallest = lst = lst
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst
    
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    guard lstored = lst = lst = l
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
    var result = 0
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    var count = 0
    var
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    
    
    
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return (x := 0
    return (x :=
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return x = 0
    
    
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return lhs = [[Double](
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    
    return (
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var newMessage
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var encoded = [
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    var encodedMessage = ""
    for character in
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    var encodedMessage = ""
    for
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    var encodedMessage = ""
    
    for char in message = ""
    for char
    for char
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var encodedMessage = ""
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    var encodedMessage = ""
    for char in message = ""
    for char in message
    
    
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    var max = 0
    var max = 0
    
    for i = 0
    for i in 0
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    return lst
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    
    return lst
    return lst
    return lst
    
    return
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    var max = 0
    
    for i
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    
    return lkjasURAL
    return lkjasdkjklj
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    var largestPrime = 0
    var largestPrime
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]
    for i in
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
    var primes = [Int]
    for i in 2..
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    var
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
    
    guard a
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
    guard a = multiply(l
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
    var
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    
    var
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    var count
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    var result = [[Double]()
    
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    var count = 0
    for i
    var count
    for i in 0
    0
    for
    0
    for
    0
    i
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    
    var count = 0
    for i = 0
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s, count the number of uppercase vowels in even indices.
 For example:
 countUpper(s: "aBCdEf") == 1
 countUpper(s: "abcdefg") == 0
 countUpper(s: "dBBE") == 0
 */
func countUpper(s: String) -> Int {
    
    
    var count = 0
    for i = 0
    var count =
XCTAssertTrue(countUpper(s: "aBCdEf") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "abcdefg") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "dBBE") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "B") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "U") == 1) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "") == 0) // cannot find 'countUpper' in scope
XCTAssertTrue(countUpper(s: "EEEE") == 2) // cannot find 'countUpper' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    guard let doubleValue(
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    
    let num = Double(Double(Double(value:
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    let doubleValue = Double(Double(value =
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    let number
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a value (string) representing a number
 and returns the closest integer to it. If the number is equidistant
 from two integers, round it away from zero.
 Examples
 Note:
 Rounding away from zero means that if the given number is equidistant
 from two integers, the one you should return is the one that is the
 farthest from zero. For example closest_integer("14.5") should
 return 15 and closest_integer("-14.5") should return -15.
 closestInteger(value: "10") == 10
 closestInteger(value: "15.3") == 15
 */
func closestInteger(value: String) -> Int {
    
    
    
    
XCTAssertTrue(closestInteger(value: "10") == 10) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "14.5") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "-15.5") == -16) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "15.3") == 15) // cannot find 'closestInteger' in scope
XCTAssertTrue(closestInteger(value: "0") == 0) // cannot find 'closestInteger' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    var result = [Int.init(repeating(repeating: Int(
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    
    
    var result =
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    
    
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    var result = [
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    
    
    var result
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    var arr = [n = [Int](
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    var result = [Int()
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, you have to make a pile of n levels of stones.
 The first level has n stones.
 The number of stones in the next level is:
 - the next odd number if n is odd.
 - the next even number if n is even.
 Return the number of stones in each level in an array, where element at index
 i represents the number of stones in the level (i+1).
 Examples:
 makeAPile(n: 3) == [3, 5, 7]
 */
func makeAPile(n: Int) -> [Int] {
    
XCTAssertTrue(makeAPile(n: 3) == [3, 5, 7]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 4) == [4, 6, 8, 10]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 5) == [5, 7, 9, 11, 13]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 6) == [6, 8, 10, 12, 14, 16]) // cannot find 'makeAPile' in scope
XCTAssertTrue(makeAPile(n: 8) == [8, 10, 12, 14, 16, 18, 20, 22]) // cannot find 'makeAPile' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a string of words separated by commas or spaces. Your task is
 to split the string into words and return an array of the words.
 For example:
 wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
 wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
 */
func wordsString(s: String) -> [String] {
    
    
    
    
    
    
XCTAssertTrue(wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "Hi, my name") == ["Hi", "my", "name"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "") == [] as [String]) // cannot find 'wordsString' in scope
XCTAssertTrue(wordsString(s: "ahmed     , gamal") == ["ahmed", "gamal"]) // cannot find 'wordsString' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    var result = [[Double](
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    
    
    
    for i in
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    var result
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes two positive numbers x and y and returns the
 biggest even integer number that is in the range [x, y] inclusive. If 
 there's no such number, then the function should return -1.
 For example:
 chooseNum(x: 12, y: 15) == 14
 chooseNum(x: 13, y: 12) == -1
 */
func chooseNum(x: Int, y: Int) -> Int {
    
    
    
    
    var result = [[Double](repeeksegments.
XCTAssertTrue(chooseNum(x: 12, y: 15) == 14) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 13, y: 12) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 33, y: 12354) == 12354) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 5234, y: 5233) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 6, y: 29) == 28) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 27, y: 10) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 7, y: 7) == -1) // cannot find 'chooseNum' in scope
XCTAssertTrue(chooseNum(x: 546, y: 546) == 546) // cannot find 'chooseNum' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n > 0 <= m: m >= m {
    guard n <= m {
    guard n <= m {
    return n
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    
    guard n > 0 <= m = m >= m >= m {
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    
    guard n >
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    
    guard n >= 0, m =
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n > 0 <= m:
    guard n <= m >= m {
    guard n
    guard n <= m
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n > 0, m = 0, m = m = n > m > m {
    guard n > m {
    
    
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 You are given two positive integers n and m, and your task is to compute the
 average of the integers from n through m (including n and m). 
 Round the answer to the nearest integer and convert that to binary.
 If n is greater than m, return -1.
 Example:
 roundedAvg(n: 1, m: 5) == .success("0b11")
 roundedAvg(n: 7, m: 5) == .failure(-1)
 roundedAvg(n: 10, m: 20) == .success("0b1111")
 roundedAvg(n: 20, m: 33) == .success("0b11010")
 */
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n > 0
XCTAssertTrue(roundedAvg(n: 1, m: 5) == .success("0b11")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 13) == .success("0b1010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 964, m: 977) == .success("0b1111001011")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 996, m: 997) == .success("0b1111100101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 560, m: 851) == .success("0b1011000010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 185, m: 546) == .success("0b101101110")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 362, m: 496) == .success("0b110101101")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 350, m: 902) == .success("0b1001110010")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 197, m: 233) == .success("0b11010111")) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 7, m: 5) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 1) == .failure(-1)) // cannot find 'roundedAvg' in scope
XCTAssertTrue(roundedAvg(n: 5, m: 5) == .success("0b101")) // cannot find 'roundedAvg' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    
    var
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    
    
    var result =
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    var result
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
    
    
    var result = [
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of positive integers x. return a sorted array of all 
 elements that hasn't any even digit.
 Note: Returned array should be sorted in increasing order.
 For example:
 uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
 uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
 */
func uniqueDigits(x: [Int]) -> [Int] {
    
XCTAssertTrue(uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [12345, 2033, 111, 151]) == [111, 151]) // cannot find 'uniqueDigits' in scope
XCTAssertTrue(uniqueDigits(x: [135, 103, 31]) == [31, 135]) // cannot find 'uniqueDigits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
    
    
    var result = [
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    var result: [String {
    var result = [String {
    var result = [String
    
    var result =
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
    
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    var result = [String(var result = [String
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers, sort the integers that are between 1 and 9 inclusive,
 reverse the resulting array, and then replace each digit by its corresponding name from
 "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
 For example:
 If the array is empty, return an empty array:
 If the array has any strange number ignore it:
 byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
 byLength(arr: [] as [Int]) == [] as [String]
 byLength(arr: [1, -1, 55]) == ["One"]
 */
func byLength(arr: [Int]) -> [String] {
    
    
    
    return arr:
XCTAssertTrue(byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [] as [Int]) == [] as [String]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 55]) == ["One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [1, -1, 3, 2]) == ["Three", "Two", "One"]) // cannot find 'byLength' in scope
XCTAssertTrue(byLength(arr: [9, 4, 8]) == ["Nine", "Eight", "Four"]) // cannot find 'byLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    var result
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
    var result = [Int
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
    
    var result = [Int.
    for i in
    var result = [Int
    for i
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement the function f that takes n as a parameter,
 and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
 or the sum of numbers from 1 to i otherwise.
 i starts from 1.
 the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
 Example:
 f(n: 5) == [1, 2, 6, 24, 15]
 */
func f(n: Int) -> [Int] {
    
    
    
    var result =
XCTAssertTrue(f(n: 5) == [1, 2, 6, 24, 15]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 7) == [1, 2, 6, 24, 15, 720, 28]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 1) == [1]) // cannot find 'f' in scope
XCTAssertTrue(f(n: 3) == [1, 2, 6]) // cannot find 'f' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    var countEven, odd, odd: Int, odd: Int {
    Int, odd: Int {
    Int
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    var even: Int {
    var even:
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    var even: Int, Int, Int, Int {
 Int
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    
    
    
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    
    var even
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    
    var count = 0
    
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a tuple that has the number of even and odd
 integer palindromes that fall within the range(1, n), inclusive.
 Example 1:
 Explanation:
 Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
 Example 2:
 Explanation:
 Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
 Note:
 1. 1 <= n <= 10^3
 2. returned tuple has the number of even and odd integer palindromes respectively.
 evenOddPalindrome(n: 3) == (1, 2)
 evenOddPalindrome(n: 12) == (4, 6)
 */
func evenOddPalindrome(n: Int) -> (Int, Int) {
    
    
XCTAssertTrue(evenOddPalindrome(n: 123) == (8, 13)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 12) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 3) == (1, 2)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 63) == (6, 8)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 25) == (5, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 19) == (4, 6)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 9) == (4, 5)) // cannot find 'evenOddPalindrome' in scope
XCTAssertTrue(evenOddPalindrome(n: 1) == (0, 1)) // cannot find 'evenOddPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    
    var sum = 0
    for i in 0
    for i in
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    for i
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    
    var sum = 0
    for i = 0
    for i in 0
    for
    for
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    var count = 0
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    
    for i in arr =
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    
    var sum
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function count_nums which takes an array of integers and returns
 the number of elements which has a sum of digits > 0.
 If a number is negative, then its first signed digit will be negative:
 e.g. -123 has signed digits -1, 2, and 3.
 countNums(arr: [] as [Int]) == 0
 countNums(arr: [-1, 11, -11]) == 1
 countNums(arr: [1, 1, 2]) == 3
 */
func countNums(arr: [Int]) -> Int {
    
    var count = 0
XCTAssertTrue(countNums(arr: [] as [Int]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [-1, -2, 0]) == 0) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 1, 2, -2, 3, 4, 5]) == 6) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 6, 9, -6, 0, 1, 5]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1, 100, 98, -7, 1, -1]) == 4) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [12, 23, 34, -45, -56, 0]) == 5) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [0, 1]) == 1) // cannot find 'countNums' in scope
XCTAssertTrue(countNums(arr: [1]) == 1) // cannot find 'countNums' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [3, [3, [3, [3, 4,4
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [3,
arr = [3,
arr = [3, [3,4,
4,
4,
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [3,
arr = [3, [3, 4, [
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [3,g
arr = [3, [3, [3, [3,4,5,4,4,
arr = [3,
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [3, [3,
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
 numbers in the array will be randomly ordered. Your task is to determine if
 it is possible to get an array sorted in non-decreasing order by performing 
 the following operation on the given array:
 You are allowed to perform right shift operation any number of times.
 One right shift operation means shifting all elements of the array by one
 position in the right direction. The last element of the array will be moved to
 the starting position in the array i.e. 0th index. 
 If it is possible to obtain the sorted array by performing the above operation
 then return true else return false.
 If the given array is empty then return true.
 Note: The given array is guaranteed to have unique elements.
 For Example:
 Explanation: By performin 2 right shift operations, non-decreasing order can
 be achieved for the given array.
 Explanation:It is not possible to get non-decreasing order for the given
 array by performing any number of right shift operations.
 moveOneBall(arr: [3, 4, 5, 1, 2]) == true
 moveOneBall(arr: [3, 5, 4, 1, 2]) == false
 */
func moveOneBall(arr: [Int]) -> Bool {
arr = [
XCTAssertTrue(moveOneBall(arr: [3, 4, 5, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 10, 1, 2]) == true) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [4, 3, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [3, 5, 4, 1, 2]) == false) // cannot find 'moveOneBall' in scope
XCTAssertTrue(moveOneBall(arr: [] as [Int]) == true) // cannot find 'moveOneBall' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
    
    return "YES
    
    return "
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
    
    
    return "NO
    
    return "NO
    
    return "
    return "
    return "
    return "    
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
    
    
    
    
    
    
    
    return "YES
    return "YES
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
    
    
    if lst2, 3, 2, 3, 3,
   ,
    
    return "YES
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this problem, you will implement a function that takes two arrays of numbers,
 and determines whether it is possible to perform an exchange of elements
 between them to make lst1 an array of only even numbers.
 There is no limit on the number of exchanged elements between lst1 and lst2.
 If it is possible to exchange elements between the lst1 and lst2 to make
 all the elements of lst1 to be even, return "YES".
 Otherwise, return "NO".
 For example:
 It is assumed that the input arrays will be non-empty.
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
 exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
 */
func exchange(lst1: [Int], lst2: [Int]) -> String {
    
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [1, 2, 3, 4], lst2: [2, 1, 4, 3]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 4]) == "YES") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [5, 7, 3], lst2: [2, 6, 3]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [3, 2, 6, 1, 8, 9], lst2: [3, 5, 5, 1, 1, 1]) == "NO") // cannot find 'exchange' in scope
XCTAssertTrue(exchange(lst1: [100, 200], lst2: [200, 200]) == "YES") // cannot find 'exchange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    
    var result = [
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    var histogram = [String.
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    var result = [String(repeeksegments = [String: [String]()
    
    
    var result = [String]()
    
    var result
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    
    
    var result = [String.enumerate(test.split
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    
    var result = [
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string representing a space separated lowercase letters, return a dictionary
 of the letter with the most repetition and containing the corresponding count.
 If several letters have the same occurrence, return all of them.
 Example:
 histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
 histogram(test: "a b b a") == ["a" : 2, "b" : 2]
 histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
 histogram(test: "b b b b a") == ["b" : 4]
 histogram(test: "") == [:] as [String : Int]
 */
func histogram(test: String) -> [String : Int] {
    var result = [String.
XCTAssertTrue(histogram(test: "a b b a") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c a b") == ["a" : 2, "b" : 2]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a b c d g") == ["a" : 1, "b" : 1, "c" : 1, "d" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "b b b b a") == ["b" : 4]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "r t g") == ["r" : 1, "t" : 1, "g" : 1]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "") == [:] as [String : Int]) // cannot find 'histogram' in scope
XCTAssertTrue(histogram(test: "a") == ["a" : 1]) // cannot find 'histogram' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
    
    var result = [String(s = ""
    for
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
    
    
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
    var result = [
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
    var result = [Double]
    var result = [
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
 then check if the result string is palindrome.
 A string is called palindrome if it reads the same backward as forward.
 You should return a tuple containing the result string and true/false for the check.
 Example
 reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
 reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
 reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
 */
func reverseDelete(s: String, c: String) -> (String, Bool) {
    
    var result = ""
XCTAssertTrue(reverseDelete(s: "abcde", c: "ae") == ("bcd", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdef", c: "b") == ("acdef", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "dwik", c: "w") == ("dik", false)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "a", c: "a") == ("", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "abcdedcba", c: "v") == ("abcdedcba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "vabba", c: "v") == ("abba", true)) // cannot find 'reverseDelete' in scope
XCTAssertTrue(reverseDelete(s: "mamma", c: "mia") == ("", true)) // cannot find 'reverseDelete' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    
    
    
    
    var result = []
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    
    
    var result = [String(
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    var result = []
    for i in lst
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    
    
    
    var result
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    
    
    var result = [String
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
    
    
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of strings, where each string consists of only digits, return an array.
 Each element i of the output should be "the number of odd elements in the
 string i of the input." where all the i's should be replaced by the number
 of odd digits in the i'th string of the input.
 oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
 oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
 */
func oddCount(lst: [String]) -> [String] {
XCTAssertTrue(oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) // cannot find 'oddCount' in scope
XCTAssertTrue(oddCount(lst: ["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) // cannot find 'oddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    
    
    
    
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    var minSum =
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    
    
    var sum
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    var sum
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    
    
    var result
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = 0
    for
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of integers nums, find the minimum sum of any non-empty sub-array
 of nums.
 Example
 minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
 minSubArraySum(nums: [-1, -2, -3]) == -6
 */
func minSubArraySum(nums: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 2, -10]) == -14) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-9999999999999999]) == -9999999999999999) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [0, 10, 20, 1000000]) == 0) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -1, -2, -3, 10, -5]) == -6) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [10, 11, 13, 8, 3, 4]) == 3) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [100, -33, 32, -1, 0, -2]) == -33) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [-10]) == -10) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [7]) == 7) // cannot find 'minSubArraySum' in scope
XCTAssertTrue(minSubArraySum(nums: [1, -1]) == -1) // cannot find 'minSubArraySum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
 */
    
    
    
    
    
    var result = 0, 0
    return 0
    var result = 0
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
 */











    return 0
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
 */




    return 0
    
    return 0
    
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
 */
    
    
    
    
    return 0
    return 0
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    
 */
    var count: Int {
    var count = 0
    var
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a rectangular grid of wells. Each row represents a single well,
 and each 1 in a row represents a single unit of water.
 Each well has a corresponding bucket that can be used to extract water from it, 
 and all buckets have the same capacity.
 Your task is to use the buckets to empty the wells.
 Output the number of times you need to lower the buckets.
 Example 1:
 Example 2:
 Example 3:
 Constraints:
 * all wells have the same length
 * 1 <= grid.length <= 10^2
 * 1 <= grid[:,1].length <= 10^2
 * grid[i][j] -> 0 | 1
 * 1 <= capacity <= 10
 maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
 maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
 maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
 */
func maxFill(grid: [[Int]], capacity: Int) -> Int {
 */

    return 0, 0, 0, 0, 0, 0, 0
    return 0
    return 0
    return 0
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 2) == 4) // cannot find 'maxFill' in scope
XCTAssertTrue(maxFill(grid: [[1, 1, 1, 1], [1, 1, 1, 1]], capacity: 9) == 2) // cannot find 'maxFill' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
    var sorted = [Int.count = [Int]()
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
    var result = [Int.init()
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
    var sorted = [Int.init(arr =
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    guard let count = arr = [Int.
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
    
    return arr = arr = arr.map(arr.sorted(arr.sorted
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this Kata, you have to sort an array of non-negative integers according to
 number of ones in their binary representation in ascending order.
 For similar number of ones, sort based on decimal value.
 It must be implemented like this:
 sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
 sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
 sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
 */
func sortArray(arr: [Int]) -> [Int] {
    
    
    
    var sorted(arr = [Int.
    
XCTAssertTrue(sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [-2, -3, -4, -5, -6]) == [-4, -2, -6, -5, -3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(arr: [2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    
    
    return [] {
    var words
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    
    
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    return []
    var result: String
    var result = []
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    
    return [String]
    var
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    
    return [
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string s and a natural number n, you have been tasked to implement 
 a function that returns an array of all words from string s that contain exactly 
 n consonants, in order these words appear in the string s.
 If the string s is empty then the function should return an empty array.
 Note: you may assume the input string contains only letters and spaces.
 Examples:
 selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
 selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
 selectWords(s: "simple white space", n: 2) == [] as [String]
 selectWords(s: "Hello world", n: 4) == ["world"]
 selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
 */
func selectWords(s: String, n: Int) -> [String] {
    
    
    return [] {
    var words
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 4) == ["little"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "simple white space", n: 2) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Hello world", n: 4) == ["world"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "Uncle sam", n: 3) == ["Uncle"]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "", n: 4) == [] as [String]) // cannot find 'selectWords' in scope
XCTAssertTrue(selectWords(s: "a b c d e f", n: 1) == ["b", "c", "d", "f"]) // cannot find 'selectWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
    
    
    
    var vow
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
    
    
    
    var
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
    
    
    var result =
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
    
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a word. Your task is to find the closest vowel that stands between 
 two consonants from the right side of the word (case sensitive).
 Vowels in the beginning and ending doesn't count. Return empty string if you didn't
 find any vowel met the above condition. 
 You may assume that the given string contains English letter only.
 Example:
 getClosestVowel(word: "yogurt") == "u"
 getClosestVowel(word: "FULL") == "U"
 getClosestVowel(word: "quick") == ""
 getClosestVowel(word: "ab") == ""
 */
func getClosestVowel(word: String) -> String {
XCTAssertTrue(getClosestVowel(word: "yogurt") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "full") == "u") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "easy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "eAsy") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ali") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "bad") == "a") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "most") == "o") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ab") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "ba") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "quick") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "anime") == "i") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Asia") == "") // cannot find 'getClosestVowel' in scope
XCTAssertTrue(getClosestVowel(word: "Above") == "o") // cannot find 'getClosestVowel' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    var stack = lstacks = ["Yes"Yes"Yes"No"
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    
    
    
    var stack =
    var stack
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    
    
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    var stack = ["Yes"Yes
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    
    var result = "Yes"Yes"No"No"No"
    if lst
    var stack = "
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    var result
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
    
    var result
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of two strings, both strings consist of open
 parentheses '(' or close parentheses ')' only.
 Your job is to check if it is possible to concatenate the two strings in
 some order, that the resulting string will be good.
 A string S is considered to be good if and only if all parentheses in S
 are balanced. For example: the string '(())()' is good, while the string
 '())' is not.
 Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
 Examples:
 matchParens(lst: ["()(", ")"]) == "Yes"
 matchParens(lst: [")", ")"]) == "No"
 */
func matchParens(lst: [String]) -> String {
    
XCTAssertTrue(matchParens(lst: ["()(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", ")"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(())", "())())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")())", "(()()("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(())))", "(()())(("]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["()", "())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(()(", "()))()"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["((((", "((())"]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(()", "(()("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")(", ")("]) == "No") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: ["(", ")"]) == "Yes") // cannot find 'matchParens' in scope
XCTAssertTrue(matchParens(lst: [")", "("]) == "Yes") // cannot find 'matchParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    
    
    
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
<|padding|> = [Int, k: Int] {
    
    var
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    return [Int, k: Int) -> [
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {


    
    guard
    guard k
    guard
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
<|padding|> {#1
    var
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    var arr: [Int] {
    var
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    
    
    var result
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers and a positive integer k, return a sorted array 
 of length k with the maximum k numbers in arr.
 Example 1:
 Example 2:
 Example 3:
 Note:
 1. The length of the array will be in the range of [1, 1000].
 2. The elements in the array will be in the range of [-1000, 1000].
 3. 0 <= k <= len(arr)
 maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
 maximum(arr: [4, -4, 4], k: 2) == [4, 4]
 maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
 */
func maximum(arr: [Int], k: Int) -> [Int] {
    var
XCTAssertTrue(maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4, 4], k: 2) == [4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [123, -123, 20, 0, 1, 2, -3], k: 3) == [2, 20, 123]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-123, 20, 0, 1, 2, -3], k: 4) == [0, 1, 2, 20]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [5, 15, 0, 3, -13, -8, 0], k: 7) == [-13, -8, 0, 0, 3, 5, 15]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-1, 0, 2, 5, 3, -10], k: 2) == [3, 5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 0, 5, -7], k: 1) == [5]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [4, -4], k: 2) == [-4, 4]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [-10, 10], k: 2) == [-10, 10]) // cannot find 'maximum' in scope
XCTAssertTrue(maximum(arr: [1, 2, 3, -23, 243, -400, 0], k: 0) == [] as [Int]) // cannot find 'maximum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    
    var result = 0
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    var result = [[Double](repeekt =
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    
    var sum = 0
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    var result = 0
    for
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
    
    
    var result = 0
    
    for i
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
 Examples
 solution(lst: [5, 8, 7, 1]) == 12
 solution(lst: [3, 3, 3, 3, 3]) == 9
 solution(lst: [30, 13, 24, 321]) == 0
 */
func solution(lst: [Int]) -> Int {
    
XCTAssertTrue(solution(lst: [5, 8, 7, 1]) == 12) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 3, 3, 3, 3]) == 9) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 24, 321]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [5, 9]) == 5) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [2, 4, 8]) == 0) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [30, 13, 23, 32]) == 23) // cannot find 'solution' in scope
XCTAssertTrue(solution(lst: [3, 13, 2, 9]) == 3) // cannot find 'solution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    var sum = 0
    for i in 0
    for i
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
    
    
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
    var sum = 0
    for i = 0
    for i
    for i
    for
    for
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    var sum = 0
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
    
    var sum = 0
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers arr and an integer k, return
 the sum of the elements with at most two digits from the first k elements of arr.
 Example:
 Constraints:
 1. 1 <= len(arr) <= 100
 2. 1 <= k <= len(arr)
 addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
 */
func addElements(arr: [Int], k: Int) -> Int {
    
    
    var sum = 0
    for i = 0
XCTAssertTrue(addElements(arr: [1, -2, -3, 41, 57, 76, 87, 88, 99], k: 3) == -4) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 121, 3, 4000, 5, 6], k: 2) == 0) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [11, 21, 3, 90, 5, 6, 7, 8, 9], k: 4) == 125) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24) // cannot find 'addElements' in scope
XCTAssertTrue(addElements(arr: [1], k: 1) == 1) // cannot find 'addElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    return [1].map {
        guard n in
        return [1
    guard
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    
    return [1]
    var arr = [
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    return [1].map {
        
        return [1, 3, 3, 4
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    guard n = [1]
    var arr = [1]
    var arr = [
    var arr = [1
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    var arr = [1]
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
 The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
 as follows: start with any positive integer n. Then each term is obtained from the 
 previous term as follows: if the previous term is even, the next term is one half of 
 the previous term. If the previous term is odd, the next term is 3 times the previous
 term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
 Note: 
 1. Collatz(1) is [1].
 2. returned array sorted in increasing order.
 For example:
 get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
 getOddCollatz(n: 5) == [1, 5]
 */
func getOddCollatz(n: Int) -> [Int] {
    
    
    return [
XCTAssertTrue(getOddCollatz(n: 14) == [1, 5, 7, 11, 13, 17]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 5) == [1, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 12) == [1, 3, 5]) // cannot find 'getOddCollatz' in scope
XCTAssertTrue(getOddCollatz(n: 1) == [1]) // cannot find 'getOddCollatz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    
    "03-99-99-99
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    
    "03
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    return false
    return false
    return false
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    return false
    return false
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    return false
    return false
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    "03- "03-
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have to write a function which validates a given date string and
 returns true if the date is valid otherwise false.
 The date is valid if all of the following rules are satisfied:
 1. The date string is not empty.
 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
 3. The months should not be less than 1 or higher than 12.
 4. The date should be in the format: mm-dd-yyyy
 validDate(date: "03-11-2000") == true
 validDate(date: "15-01-2012") == false
 validDate(date: "04-0-2040") == false
 validDate(date: "06-04-2020") == true
 validDate(date: "06/04/2020") == false
 */
func validDate(date: String) -> Bool {
    
    
    "03
XCTAssertTrue(validDate(date: "03-11-2000") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "15-01-2012") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-0-2040") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-04-2020") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "01-01-2007") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "03-32-2011") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-31-3000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "06-06-2005") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "21-31-2000") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-12-2003") == true) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04122003") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "20030412") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "2003-04-12") == false) // cannot find 'validDate' in scope
XCTAssertTrue(validDate(date: "04-2003") == false) // cannot find 'validDate' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
    
    
    
    let
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
    
    let words = []
    for word in txt.components =
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
    
    
    
    
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
    
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
    
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

extension Int: Error {

}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

extension Int: Error {}

/*
 Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
 should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
 alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
 Examples
 splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
 splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
 splitWords(txt: "abcdef") == .failure(3)
 */
func splitWords(txt: String) -> Result<[String], Int> {
XCTAssertTrue(splitWords(txt: "Hello world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello world,!") == .success(["Hello", "world,!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "Hello,Hello,world !") == .success(["Hello,Hello,world", "!"])) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "abcdef") == .failure(3)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaabb") == .failure(2)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "aaaBb") == .failure(1)) // cannot find 'splitWords' in scope
XCTAssertTrue(splitWords(txt: "") == .failure(0)) // cannot find 'splitWords' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    return true
    return true
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    return false
    
    return false
    return
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    
    
    return false
    
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    
    return true
    return true
    return true
    
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    for i in l in lst in lst: lst: l
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    return false
    for i
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    
    return true
    for i
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    
    return true
    for i in lst
    return true
    return lst
    return true
    return false
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return whether or not they are sorted
 in ascending order. If array has more than 1 duplicate of the same
 number, return false. Assume no negative numbers and only integers.
 Examples
 isSorted(lst: [5]) == true
 isSorted(lst: [1, 2, 3, 4, 5]) == true
 isSorted(lst: [1, 3, 2, 4, 5]) == false
 isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
 isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
 isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
 isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
 isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
 */
func isSorted(lst: [Int]) -> Bool {
    
    
    return
XCTAssertTrue(isSorted(lst: [5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [] as [Int]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [3, 2, 1]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 2, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 3, 3, 4]) == false) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 2, 3, 3, 4]) == true) // cannot find 'isSorted' in scope
XCTAssertTrue(isSorted(lst: [1, 2, 3, 4]) == true) // cannot find 'isSorted' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (1, (1, interval1, interval
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (1, interval1,
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (interval1
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (interval1, interval1
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (interval1: (1
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (interval1, interval: (1, interval: (1, interval: (1, interval: (1
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
 (1, (1, (
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given two intervals,
 where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
 The given intervals are closed which means that the interval (start, end)
 includes both start and end.
 For each given interval, it is assumed that its start is less or equal its end.
 Your task is to determine whether the length of intersection of these two 
 intervals is a prime number.
 Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
 which its length is 1, which not a prime number.
 If the length of the intersection is a prime number, return "YES",
 otherwise, return "NO".
 If the two intervals don't intersect, return "NO".
 [input/output] samples:
 intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
 intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
 intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
 */
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    (interval1, interval:
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    
    
    
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    
    var result = 0
    for
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    var result = 0
    for i in
    
    = 0
    0
    for
    =
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    
    
    var result = [[Double]
    for
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    
    var result = [[Double]()
    for i in
    
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array arr of integers and you need to return
 sum of magnitudes of integers multiplied by product of all signs
 of each number in the array, represented by 1, -1 or 0.
 Note: return nil for empty arr.
 Example:
 prodSigns(arr: [1, 2, 2, -4]) == 9
 prodSigns(arr: [0, 1]) == 0
 prodSigns(arr: [] as [Int]) == nil
 */
func prodSigns(arr: [Int]) -> Int? {
    
    
    
    
XCTAssertTrue(prodSigns(arr: [1, 2, 2, -4]) == -9) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [0, 1]) == 0) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [1, 1, 1, 2, 3, -1, 1]) == -10) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [] as [Int]) == nil) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [2, 4, 1, 2, -1, -1, 9]) == 20) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, -1, 1]) == 4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 1]) == -4) // cannot find 'prodSigns' in scope
XCTAssertTrue(prodSigns(arr: [-1, 1, 1, 0]) == 0) // cannot find 'prodSigns' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
    
    
    
    

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
 through.
 through.

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
 */
    
    
    
    
    var result =
    
    return l

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
    
    
    
    
    

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
    
    
    
    
    
    
    
    
    
    

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
 through.
 through.
 through

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
 through.
 through.
 through.
 through.
 */
    
    

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
    
 through.
 through.

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
 each cell of the grid contains a value. Every integer in the range [1, N * N]
 inclusive appears exactly once on the cells of the grid.
 You have to find the minimum path of length k in the grid. You can start
 from any cell, and in each step you can move to any of the neighbor cells,
 in other words, you can go to cells which share an edge with you current
 cell.
 Please note that a path of length k means visiting exactly k cells (not
 necessarily distinct).
 You CANNOT go off the grid.
 A path A (of length k) is considered less than a path B (of length k) if
 after making the ordered arrays of the values on the cells that A and B go
 through (let's call them lst_A and lst_B), lst_A is lexicographically less
 than lst_B, in other words, there exist an integer index i (1 <= i <= k)
 such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
 lst_A[j] = lst_B[j].
 It is guaranteed that the answer is unique.
 Return an ordered array of the values on the cells that the minimum path go through.
 Examples:    
 minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
 minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
 */
func minPath(grid: [[Int]], k: Int) -> [Int] {
 through.
 through.
 through

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// return [1, 2,
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// Tribonacci(n Tribonacci(n
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// 2 n Tribonacci sequence of the first 2n
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// Tribonacci(n Trib
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// return array
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
return [1, 2, 2
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// return an array
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
//  first
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
// 3 n Tribonacci(n Tribonacci numbers
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
 the last couple centuries. However, what people don't know is Tribonacci sequence.
 Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
 For example:
 tri(2) = 1 + (2 / 2) = 2
 tri(4) = 3
 tri(3) = tri(2) + tri(1) + tri(4)
 = 2 + 3 + 3 = 8 
 You are given a non-negative integer number n, you have to a return an array of the 
 first n + 1 numbers of the Tribonacci sequence.
 Examples:
 tri(n: 3) == [1, 3, 2, 8]
 */
func tri(n: Int) -> [Int] {
/*
 first n elements of the first n elements of the first n elements of the first n elements of the first n Tribon
XCTAssertTrue(tri(n: 3) == [1, 3, 2, 8]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 4) == [1, 3, 2, 8, 3]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 5) == [1, 3, 2, 8, 3, 15]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 6) == [1, 3, 2, 8, 3, 15, 4]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 7) == [1, 3, 2, 8, 3, 15, 4, 24]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 0) == [1]) // cannot find 'tri' in scope
XCTAssertTrue(tri(n: 1) == [1, 3]) // cannot find 'tri' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
    var product = 0
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    var product = 0
    for i = 1
    for i
    = 0
    
    = 0
    for
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the product of the odd digits.
 Return 0 if all digits are even.
 For example:
 digits(n: 1) == 1
 digits(n: 4) == 0
 digits(n: 235) == 15
 */
func digits(n: Int) -> Int {
    
    
    
    
    var product =
XCTAssertTrue(digits(n: 5) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 54) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 120) == 1) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5014) == 5) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 98765) == 315) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 5576543) == 2625) // cannot find 'digits' in scope
XCTAssertTrue(digits(n: 2468) == 0) // cannot find 'digits' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    
    var stack = [Double.
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    
    
    var stack = [Double.init()
    
    for char in
    
    
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    var stack = [DoubleStack()
    for char in
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    var stack
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    var stack = [Double.init()
    
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    
    var stack
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    
    
    
    var stack = [
    for (0..
    var stack = [
    for c
    
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes a string as input which contains only square brackets.
 The function should return true if and only if there is a valid subsequence of brackets 
 where at least one bracket in the subsequence is nested.
 isNested(string: "[[]]") == true
 isNested(string: "[]]]]]]][[[[[]") == false
 isNested(string: "[][]") == false
 isNested(string: "[]") == false
 isNested(string: "[[][]]") == true
 isNested(string: "[[]][[") == true
 */
func isNested(string: String) -> Bool {
    
    var stack = [
XCTAssertTrue(isNested(string: "[[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]][[[[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[]]]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]]]]]]]]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[][][[]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[]]") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[]][[") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[][]]") == true) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "[[[[[[[[") == false) // cannot find 'isNested' in scope
XCTAssertTrue(isNested(string: "]]]]]]]]") == false) // cannot find 'isNested' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
    for i in lst = 0
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var result = 0
    for i
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
    for i in
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
    for i in
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    var sum = 0
    
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of numbers.
 You need to return the sum of squared numbers in the given array,
 round each element in the array to the upper int(Ceiling) first.
 Examples:
 sumSquares(lst: [1.0, 2.0, 3.0]) == 14
 sumSquares(lst: [1.0, 4.0, 9.0]) == 98
 sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
 sumSquares(lst: [1.4, 4.2, 0.0]) == 29
 sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
 */
func sumSquares(lst: [Double]) -> Int {
    
    
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 2.0, 3.0]) == 14) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [1.4, 4.2, 0.0]) == 29) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-2.4, 1.0, 1.0]) == 6) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [100.0, 1.0, 15.0, 2.0]) == 10230) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [10000.0, 10000.0]) == 200000000) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 4.6, 6.3]) == 75) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.4, 17.9, 18.9, 19.9]) == 1086) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [0.0]) == 0) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0]) == 1) // cannot find 'sumSquares' in scope
XCTAssertTrue(sumSquares(lst: [-1.0, 1.0, 0.0]) == 2) // cannot find 'sumSquares' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
    var lastCharacters = ""
    for i
    
    for i
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
    let words = txt.split = txt.split(txt.split(separator: String(separator: "
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns true if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and false otherwise.
 Note: "word" is a group of characters separated by space.
 Examples:
 checkIfLastCharIsALetter(txt: "apple pie") == false
 checkIfLastCharIsALetter(txt: "apple pi e") == true
 checkIfLastCharIsALetter(txt: "apple pi e ") == false
 checkIfLastCharIsALetter(txt: "") == false
 */
func checkIfLastCharIsALetter(txt: String) -> Bool {
    
    
    
    
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "A") == true) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "Pumpkin pie 1") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "eeeee e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pie") == false) // cannot find 'checkIfLastCharIsALetter' in scope
XCTAssertTrue(checkIfLastCharIsALetter(txt: "apple pi e ") == false) // cannot find 'checkIfLastCharIsALetter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    var result = [Double(repeeksegments = 0
    for i in 0
    for i in 0
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    var result = [Double]
    for (0..
    for i
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    for i inout
    var i
    var i
    var i
    
    var
    var
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
    var result
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which returns the largest index of an element which
 is not greater than or equal to the element immediately preceding it. If
 no such element exists then return -1. The given array will not contain
 duplicate values.
 Examples:
 canArrange(arr: [1, 2, 4, 3, 5]) == 3
 canArrange(arr: [1, 2, 3]) == -1
 */
func canArrange(arr: [Int]) -> Int {
    
    
XCTAssertTrue(canArrange(arr: [1, 2, 4, 3, 5]) == 3) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 2, 4, 5]) == -1) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [4, 8, 5, 7, 3]) == 4) // cannot find 'canArrange' in scope
XCTAssertTrue(canArrange(arr: [] as [Int]) == -1) // cannot find 'canArrange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    
    var max = nil
    var min = nil
    
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    
    
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var min = nil
    var max = nil
    
    
    
    
    
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    var max = nil
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    var
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    var min = nil
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    var min =
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    var
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that returns a tuple (a, b), where 'a' is
 the largest of negative integers, and 'b' is the smallest
 of positive integers in an array.
 If there is no negative or positive integers, return them as nil.
 Examples:
 largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
 largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
 largestSmallestIntegers(lst: [0]) == (nil, nil)
 */
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    
    
    var max = nil
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7, 0]) == (nil, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [0]) == (nil, nil)) // generic parameter 'A' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // generic parameter 'B' could not be inferred
XCTAssertTrue(largestSmallestIntegers(lst: [-1, -3, -5, -6, 0]) == (-1, nil)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope
XCTAssertTrue(largestSmallestIntegers(lst: [-6, -4, -4, -3, -100, 1]) == (-3, 1)) // cannot find 'largestSmallestIntegers' in scope

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    switch a, b:
    
    switch a, b {
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    
    
    switch a,
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

/*
 Create a function that takes integers, floats, or strings representing
 real numbers, and returns the larger variable in its given variable type.
 Return nil if the values are equal.
 Note: If a real number is represented as a string, the floating point might be . or ,
 compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
 compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
 compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
 compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
 */
func compareOne(a: Value, b: Value) -> Value? {
    
    
    
    switch a:
    
    return switch a
    return switch a, b
    
    case.int
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .intValue(2)) == .intValue(2)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)) // cannot infer contextual base in reference to member 'doubleValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(2), b: .intValue(3)) == .intValue(3)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(5), b: .intValue(6)) == .intValue(6)) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .stringValue("2")) == .stringValue("2")) // cannot infer contextual base in reference to member 'stringValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'intValue'
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot find 'compareOne' in scope
XCTAssertTrue(compareOne(a: .stringValue("1"), b: .intValue(1)) == nil) // cannot infer contextual base in reference to member 'stringValue'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
    var result = [[Double]()
    for i in
    for i in 0..<
    for i in 0..<
    for
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
    
    
    var result
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
 Example
 isEqualToSumEven(n: 4) == false
 isEqualToSumEven(n: 6) == false
 isEqualToSumEven(n: 8) == true
 */
func isEqualToSumEven(n: Int) -> Bool {
XCTAssertTrue(isEqualToSumEven(n: 4) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 6) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 8) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 10) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 11) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 12) == true) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 13) == false) // cannot find 'isEqualToSumEven' in scope
XCTAssertTrue(isEqualToSumEven(n: 16) == true) // cannot find 'isEqualToSumEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    var result
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
    var result = [[Double](repepairsultiple of size:
    for i in 0..<Double]
    for i in 0..<
    for i
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
    var result = [[
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Brazilian factorial is defined as:
 brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
 where n > 0
 For example:
 The function will receive an integer as input and should return the special
 factorial of this integer.
 specialFactorial(n: 4) == 288
 */
func specialFactorial(n: Int) -> Int {
    
    
    
    
    for i in
    
    
    
    
    var
    var
    
    
    var
    var
    var
    var
XCTAssertTrue(specialFactorial(n: 4) == 288) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 5) == 34560) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 7) == 125411328000) // cannot find 'specialFactorial' in scope
XCTAssertTrue(specialFactorial(n: 1) == 1) // cannot find 'specialFactorial' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
    
    
    return text.split(
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string text, replace all spaces in it with underscores, 
 and if a string has more than 2 consecutive spaces, 
 then replace all consecutive spaces with - 
 fixSpaces(text: " Example") == "Example"
 fixSpaces(text: " Example 1") == "Example_1"
 fixSpaces(text: " Example 2") == "_Example_2"
 fixSpaces(text: " Example 3") == "_Example-3"
 */
func fixSpaces(text: String) -> String {
    
    
    
XCTAssertTrue(fixSpaces(text: "Example") == "Example") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Mudasir Hanif ") == "Mudasir_Hanif_") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Yellow Yellow  Dirty  Fellow") == "Yellow_Yellow__Dirty__Fellow") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "Exa   mple") == "Exa-mple") // cannot find 'fixSpaces' in scope
XCTAssertTrue(fixSpaces(text: "   Exa 1 2 2 mple") == "-Exa_1_2_2_mple") // cannot find 'fixSpaces' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    
    
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    return "Yes"Yes"
    
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    (fileNameCheck(fileName: String)
    (fileName: String {
    String {
    String {
    String
    String {
    String {
    String {
    String
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    
    
    return "Yes
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    return "Yes'Yes
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    
    
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
    
    
    
    return "Yes"No
    guard let
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function which takes a string representing a file's name, and returns
 'Yes' if the the file's name is valid, and returns 'No' otherwise.
 A file's name is considered to be valid if and only if all the following conditions 
 are met:
 - There should not be more than three digits ('0'-'9') in the file's name.
 - The file's name contains exactly one dot '.'
 - The substring before the dot should not be empty, and it starts with a letter from 
 the latin alphapet ('a'-'z' and 'A'-'Z').
 - The substring after the dot should be one of these: ['txt', 'exe', 'dll']
 Examples:
 fileNameCheck(fileName: "example.txt") == "Yes"
 fileNameCheck(fileName: "1example.dll") == "No"
 */
func fileNameCheck(fileName: String) -> String {
XCTAssertTrue(fileNameCheck(fileName: "example.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1example.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s1sdf3.asd") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "K.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "MY16FILE3.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "His12FILE94.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "_Y.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "?aREYA.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "/thisIsValid.dll") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.wow") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIsValid.txtexe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "#this2I4s5valid.ten") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "@this1Is6Valid.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "thisIs12valid.6exe4.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "all.exe.txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_No.exe") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "Is3youfault.txt") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "noOne#knows.dll") == "Yes") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "1I563_Yes3.exe") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "I563_Yes3.txtt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final..txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "final132") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "F4indsartal132.") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: ".txt") == "No") // cannot find 'fileNameCheck' in scope
XCTAssertTrue(fileNameCheck(fileName: "s.") == "No") // cannot find 'fileNameCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    var result = ""
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    
    var result = ""
    
    for i
    for i
    var
    var
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    
    var result = ""
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    var result = ""
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    var result = ""
    
    
    for i in sentence = ""
    for i in sentence
    sentence
    sentence
    
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
    
    
    var result = ""
    for
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string representing a sentence,
 the sentence contains some words separated by a space,
 and you have to return a string that contains the words from the original sentence,
 whose lengths are prime numbers,
 the order of the words in the new string should be the same as the original one.
 Example 1:
 Example 2:
 Constraints:
 * 1 <= len(sentence) <= 100
 * sentence contains only letters
 wordsInSentence(sentence: "This is a test") == "is"
 wordsInSentence(sentence: "lets go for swimming") == "go for"
 */
func wordsInSentence(sentence: String) -> String {
XCTAssertTrue(wordsInSentence(sentence: "This is a test") == "is") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "lets go for swimming") == "go for") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "there is no place available here") == "there is no place") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "Hi I am Hussein") == "Hi am Hussein") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "go for it") == "go for it") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here") == "") // cannot find 'wordsInSentence' in scope
XCTAssertTrue(wordsInSentence(sentence: "here is") == "is") // cannot find 'wordsInSentence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
    
    guard let x =
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
    
    
    let x = Double(numerator = Double
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
    
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
    
    let x = Double(l
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
    
    
    
    let x = Double(lhs = Double
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to implement a function that will simplify the expression
 x * n. The function returns true if x * n evaluates to a whole number and false
 otherwise. Both x and n, are string representation of a fraction, and have the following format,
 <numerator>/<denominator> where both numerator and denominator are positive whole numbers.
 You can assume that x, and n are valid fractions, and do not have zero as denominator.
 simplify(x: "1/5", n: "5/1") == true
 simplify(x: "1/6", n: "2/1") == false
 simplify(x: "7/10", n: "10/2") == false
 */
func simplify(x: String, n: String) -> Bool {
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/6", n: "2/1") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/1", n: "3/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/10", n: "10/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/10", n: "50/10") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "7/2", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "11/6", n: "6/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/3", n: "5/2") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "5/2", n: "3/5") == false) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "8/4") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "2/4", n: "4/2") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "5/1") == true) // cannot find 'simplify' in scope
XCTAssertTrue(simplify(x: "1/5", n: "1/5") == false) // cannot find 'simplify' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
    
    var result = [Int.
    var
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    var result = [Int.init(repeekwit(num
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
    
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
    
    var result
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
    
    var result = [Int
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function which sorts the given array of integers
 in ascending order according to the sum of their digits.
 Note: if there are several items with similar sum of their digits,
 order them based on their index in original array.
 For example:
 orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
 orderByPoints(nums: [] as [Int]) == [] as [Int]
 */
func orderByPoints(nums: [Int]) -> [Int] {
    
    
    
    var result = [Int()
XCTAssertTrue(orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [] as [Int]) == [] as [Int]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) // cannot find 'orderByPoints' in scope
XCTAssertTrue(orderByPoints(nums: [0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) // cannot find 'orderByPoints' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
    
    
    
    
    
    var count
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
    
    
    
    
    
    var result = 0
    for i
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
    
    var count = 0
    for i
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an array of numbers as input and returns 
 the number of elements in the array that are greater than 10 and both 
 first and last digits of a number are odd (1, 3, 5, 7, 9).
 For example:
 specialFilter(nums: [15, -73, 14, -15]) == 1
 specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
 */
func specialFilter(nums: [Int]) -> Int {
    
    
    
    
    
XCTAssertTrue(specialFilter(nums: [5, -2, 1, -5]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [15, -73, 14, -15]) == 1) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [43, -12, 93, 125, 121, 109]) == 4) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [71, -2, -33, 75, 21, 19]) == 3) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [1]) == 0) // cannot find 'specialFilter' in scope
XCTAssertTrue(specialFilter(nums: [] as [Int]) == 0) // cannot find 'specialFilter' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
    
    var a
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
    
    var a
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
    var a = [Double](repeating: Double
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
    
    
    var
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a positive integer n. You have to create an integer array a of length n.
 For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
 Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
 and a[i] + a[j] + a[k] is a multiple of 3.
 Example :
 Explanation: 
 a = [1, 3, 7, 13, 21]
 The only valid triple is (1, 7, 13).
 getMaxTriples(n: 5) == 1
 */
func getMaxTriples(n: Int) -> Int {
    
    
    var a
XCTAssertTrue(getMaxTriples(n: 5) == 1) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 6) == 4) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 10) == 36) // cannot find 'getMaxTriples' in scope
XCTAssertTrue(getMaxTriples(n: 100) == 53361) // cannot find 'getMaxTriples' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    
    
    var result = lst = lst
    
    
    
    var result = lst
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    var result
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    var result =
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings as a parameter,
 deletes the strings that have odd lengths from it,
 and returns the resulted array with a sorted order,
 The array is always an array of strings and never an array of numbers,
 and it may contain duplicates.
 The order of the array should be ascending by length of each word, and you
 should return the array sorted by that rule.
 If two words have the same length, sort the array alphabetically.
 The function should return an array of strings in sorted order.
 You may assume that all words will have the same length.
 For example:
 sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
 sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
 */
func sortedListSum(lst: [String]) -> [String] {
    
XCTAssertTrue(sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "b", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["AI", "ai", "au"]) == ["AI", "ai", "au"]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["a", "b", "b", "c", "c", "a"]) == [] as [String]) // cannot find 'sortedListSum' in scope
XCTAssertTrue(sortedListSum(lst: ["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) // cannot find 'sortedListSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    var matrix =
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    
    
    for i
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    for i in
    
    
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 A simple program which should return the value of x if n is 
 a prime number and should return the value of y otherwise.
 Examples:
 xOrY(n: 7, x: 34, y: 12) == 34
 xOrY(n: 15, x: 8, y: 5) == 5
 */
func xOrY(n: Int, x: Int, y: Int) -> Int {
XCTAssertTrue(xOrY(n: 7, x: 34, y: 12) == 34) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 15, x: 8, y: 5) == 5) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3, x: 33, y: 5212) == 33) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1259, x: 3, y: 52) == 3) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 7919, x: -1, y: 12) == -1) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 3609, x: 1245, y: 583) == 583) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 91, x: 56, y: 129) == 129) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 6, x: 34, y: 1234) == 1234) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 1, x: 2, y: 0) == 0) // cannot find 'xOrY' in scope
XCTAssertTrue(xOrY(n: 2, x: 2, y: 0) == 2) // cannot find 'xOrY' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for i in
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
    
    
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
    var sum = 0
    for i = 0
    for i in 0
    for i
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0.0
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
    
    var sum = 0
    for (0
    for i in 0
    for i in 0, j
    0
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
    
    var sum = 0
    for i
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
    
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of numbers, return the sum of squares of the numbers
 in the array that are odd. Ignore numbers that are negative or not integers.
 If the input array is empty, return 0.
 doubleTheDifference(lst: [1, 3, 2, 0]) == 10
 doubleTheDifference(lst: [-1, -2, 0]) == 0
 doubleTheDifference(lst: [9, -2]) == 81
 doubleTheDifference(lst: [0]) == 0
 */
func doubleTheDifference(lst: [Double]) -> Int {
XCTAssertTrue(doubleTheDifference(lst: [] as [Double]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [5.0, 4.0]) == 25) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.1, 0.2, 0.3]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-10.0, -20.0, -30.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-1.0, -2.0, 8.0]) == 0) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [0.2, 3.0, 5.0]) == 34) // cannot find 'doubleTheDifference' in scope
XCTAssertTrue(doubleTheDifference(lst: [-9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0]) == 165) // cannot find 'doubleTheDifference' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
    
    
    
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
    
    var result = [0
    var
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
 */
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    var
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
    
    
    
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 I think we all remember that feeling when the result of some long-awaited
 event is finally known. The feelings and thoughts you have at that moment are
 definitely worth noting down and comparing.
 Your task is to determine if a person correctly guessed the results of a number of matches.
 You are given two arrays of scores and guesses of equal length, where each index shows a match. 
 Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
 the value is 0, and if not, the value is the absolute difference between the guess and the score.
 example:
 compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
 compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
 */
func compare(game: [Int], guess: [Int]) -> [Int] {
    
    
XCTAssertTrue(compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [0, 0, 0, 0, 0, 0], guess: [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3], guess: [-1, -2, -3]) == [2, 4, 6]) // cannot find 'compare' in scope
XCTAssertTrue(compare(game: [1, 2, 3, 5], guess: [-1, 2, 3, 4]) == [2, 0, 0, 1]) // cannot find 'compare' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
    
    
    
    
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given the name of a class (a string) and an array of extensions.
 The extensions are to be used to load additional classes to the class. The
 strength of the extension is as follows: Let CAP be the number of the uppercase
 letters in the extension's name, and let SM be the number of lowercase letters 
 in the extension's name, the strength is given by the fraction CAP - SM. 
 You should find the strongest extension and return a string in this 
 format: ClassName.StrongestExtensionName.
 If there are two or more extensions with the same strength, you should
 choose the one that comes first in the array.
 For example, if you are given "Slices" as the class and an array of the
 extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
 return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
 (its strength is -1).
 Example:
 Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
 */
func Strongest_Extension(className: String, extensions: [String]) -> String {
    
    
    
    
    
    
XCTAssertTrue(Strongest_Extension(className: "Watashi", extensions: ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Boku123", extensions: ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__YESIMHERE", extensions: ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "K", extensions: ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "__HAHA", extensions: ["Tab", "123", "781345", "--"]) == "__HAHA.123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "YameRore", extensions: ["HhAas", "okIWILL123", "WorkOut", "Fails", "--"]) == "YameRore.okIWILL123") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "finNNalLLly", extensions: ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "", extensions: ["Bb", "91245"]) == ".Bb") // cannot find 'Strongest_Extension' in scope
XCTAssertTrue(Strongest_Extension(className: "Sp", extensions: ["671235", "Bb"]) == "Sp.671235") // cannot find 'Strongest_Extension' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    
    var a��
    var b = [String(a = [String(repep = [String]()
    
    
    
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    for i in 0..<
    for i in 0..
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    
    var b = [Double]
    
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    
    
    var a = [String(b = [String(repep = [String]()
    
    for i in
    for i in 0..<
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
 cycpatternCheck(a: "abcd", b: "abd") == false
 cycpatternCheck(a: "hello", b: "ell") == true
 cycpatternCheck(a: "whassup", b: "psus") == false
 cycpatternCheck(a: "abab", b: "baa") == true
 cycpatternCheck(a: "efef", b: "eeff") == false
 cycpatternCheck(a: "himenss", b: "simen") == true
 */
func cycpatternCheck(a: String, b: String) -> Bool {
    
    
XCTAssertTrue(cycpatternCheck(a: "xyzw", b: "xyw") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "yello", b: "ell") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "whattup", b: "ptut") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "efef", b: "fee") == true) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "abab", b: "aabb") == false) // cannot find 'cycpatternCheck' in scope
XCTAssertTrue(cycpatternCheck(a: "winemtt", b: "tinem") == true) // cannot find 'cycpatternCheck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
    var evenCounts =
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
    var evenCount =
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
    
    var
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an integer. return a tuple that has the number of even and odd digits respectively.
 Example:
 evenOddCount(num: -12) == (1, 1)
 evenOddCount(num: 123) == (1, 2)
 */
func evenOddCount(num: Int) -> (Int, Int) {
    
    
    
    
    
    
    var even
XCTAssertTrue(evenOddCount(num: 7) == (0, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -78) == (1, 1)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 3452) == (2, 2)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 346211) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -345821) == (3, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -2) == (1, 0)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: -45347) == (2, 3)) // cannot find 'evenOddCount' in scope
XCTAssertTrue(evenOddCount(num: 0) == (1, 0)) // cannot find 'evenOddCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
    var result =
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer, obtain its roman numeral equivalent as a string,
 and return it in lowercase.
 Restrictions: 1 <= num <= 1000
 Examples:
 intToMiniRoman(number: 19) == "xix"
 intToMiniRoman(number: 152) == "clii"
 intToMiniRoman(number: 426) == "cdxxvi"
 */
func intToMiniRoman(number: Int) -> String {
    
    
    
    
    
    var
XCTAssertTrue(intToMiniRoman(number: 19) == "xix") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 152) == "clii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 251) == "ccli") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 426) == "cdxxvi") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 500) == "d") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1) == "i") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 4) == "iv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 43) == "xliii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 90) == "xc") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 94) == "xciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 532) == "dxxxii") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 900) == "cm") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 994) == "cmxciv") // cannot find 'intToMiniRoman' in scope
XCTAssertTrue(intToMiniRoman(number: 1000) == "m") // cannot find 'intToMiniRoman' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
    
    
    guard a = [[Double](
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    return lhs = [[Double]
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
    
    for i
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return true if the three
 sides form a right-angled triangle, false otherwise.
 A right-angled triangle is a triangle in which one angle is right angle or 
 90 degree.
 Example:
 rightAngleTriangle(a: 3, b: 4, c: 5) == true
 rightAngleTriangle(a: 1, b: 2, c: 3) == false
 */
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    
    
    
    
    
    
    
XCTAssertTrue(rightAngleTriangle(a: 3, b: 4, c: 5) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 2, c: 3) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 6, c: 8) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 2) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 7, b: 24, c: 25) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 10, b: 5, c: 7) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 5, b: 12, c: 13) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 15, b: 8, c: 17) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 48, b: 55, c: 73) == true) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 1, b: 1, c: 1) == false) // cannot find 'rightAngleTriangle' in scope
XCTAssertTrue(rightAngleTriangle(a: 2, b: 2, c: 10) == false) // cannot find 'rightAngleTriangle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    var max = ""
    
    
    
    var
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
    
    var max = 0
    var count = 0
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
    
    
    var
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
    var max = 0
    var count = 0
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
    
    
    
    
    var max
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
    
    
    var max =
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    var max = 0
    
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts an array of strings.
 The array contains different words. Return the word with maximum number
 of unique characters. If multiple strings have maximum number of unique
 characters, return the one which comes first in lexicographical order.
 findMax(words: ["name", "of", "string"]) == "string"
 findMax(words: ["name", "enam", "game"]) == "enam"
 findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
 */
func findMax(words: [String]) -> String {
    var max = ""
    var
XCTAssertTrue(findMax(words: ["name", "of", "string"]) == "string") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["name", "enam", "game"]) == "enam") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["abc", "cba"]) == "abc") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "this", "game", "of", "footbott"]) == "footbott") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "gonna", "rock"]) == "gonna") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["we", "are", "a", "mad", "nation"]) == "nation") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["this", "is", "a", "prrk"]) == "this") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["b"]) == "b") // cannot find 'findMax' in scope
XCTAssertTrue(findMax(words: ["play", "play", "play"]) == "play") // cannot find 'findMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
    return [11
    return [
    return [
    return [
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
    return [11
    return [
    return [
    return [
}
    return [
return [11 // expected ']' in container literal expression
return [ // expected expression in container literal

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
    
    
    return [
    return [
    return
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
    
    
    
    return [
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're a hungry rabbit, and you already have eaten a certain number of carrots,
 but now you need to eat more carrots to complete the day's meals.
 you should return an array of [ total number of eaten carrots after your meals,
 the number of carrots left after your meals ]
 if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
 Example:
 Variables:
 @number : integer
 the number of carrots that you have eaten.
 @need : integer
 the number of carrots that you need to eat.
 @remaining : integer
 the number of remaining carrots thet exist in stock
 Constrain:
 * 0 <= number <= 1000
 * 0 <= need <= 1000
 * 0 <= remaining <= 1000
 Have fun :)
 eat(number: 5, need: 6, remaining: 10) == [11, 4]
 eat(number: 4, need: 8, remaining: 9) == [12, 1]
 eat(number: 1, need: 10, remaining: 10) == [11, 0]
 eat(number: 2, need: 11, remaining: 5) == [7, 0]
 */
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    
    
    return [11
    return [
    
XCTAssertTrue(eat(number: 5, need: 6, remaining: 10) == [11, 4]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 8, remaining: 9) == [12, 1]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 1, need: 10, remaining: 10) == [11, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 2, need: 11, remaining: 5) == [7, 0]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 7) == [9, 2]) // cannot find 'eat' in scope
XCTAssertTrue(eat(number: 4, need: 5, remaining: 1) == [5, 0]) // cannot find 'eat' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    if operators.count!= operands.count - 1 {
        return 0
    }
    
    var result = 0
    for i in 0..<operands.count {
        if i == 0 {
            result = operands[i]
        } else {
            switch operators[i-1] {
            case "+":
                result += operands[i]
            case "-":
                result -= operands[i]
            case "*":
                result *= operands[i]
            case "//":
                result = result // operands[i]
            case "**":
                result = result ** operands[i]
            default:
                break
            }
        }
    }
    
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    if operators.count!= operands.count - 1 {
        return 0
    }
    
    var result = 0
    for i in 0..<operands.count {
        if i == 0 {
            result = operands[i]
        } else {
            switch operators[i-1] {
            case "+":
                result += operands[i]
            case "-":
                result -= operands[i]
            case "*":
                result *= operands[i]
            case "//":
                result = result // operands[i]
            case "**":
                result = result ** operands[i]
            default:
                break
            }
        }
    }
    
    return result
}
```
if operators.count!= operands.count - 1 { // '=' must have consistent whitespace on both sides
if operators.count!= operands.count - 1 { // use of '=' in a boolean context, did you mean '=='?
if operators.count!= operands.count - 1 { // cannot force unwrap value of non-optional type 'Int'
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    result += operands[operands.count-1]
    return result
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    // Write your code here
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    // Write your code here
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operands.count-1 {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result + operands[operands.count-1]
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operators.count {
        if i == 0 {
            result = operands[i]
        } else {
            switch operators[i] {
            case "+":
                result += operands[i]
            case "-":
                result -= operands[i]
            case "*":
                result *= operands[i]
            case "//":
                result = result // operands[i]
            case "**":
                result = result ** operands[i]
            default:
                break
            }
        }
    }
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operators.count {
        if i == 0 {
            result = operands[i]
        } else {
            switch operators[i] {
            case "+":
                result += operands[i]
            case "-":
                result -= operands[i]
            case "*":
                result *= operands[i]
            case "//":
                result = result // operands[i]
            case "**":
                result = result ** operands[i]
            default:
                break
            }
        }
    }
    return result
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    // write your code here
    var result = 0
    for i in 0..<operators.count {
        if i == 0 {
            result = operands[i]
        } else if operators[i] == "+" {
            result += operands[i]
        } else if operators[i] == "-" {
            result -= operands[i]
        } else if operators[i] == "*" {
            result *= operands[i]
        } else if operators[i] == "//" {
            result = result // operands[i]
        } else if operators[i] == "**" {
            result = result ** operands[i]
        }
    }
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    // write your code here
    var result = 0
    for i in 0..<operators.count {
        if i == 0 {
            result = operands[i]
        } else if operators[i] == "+" {
            result += operands[i]
        } else if operators[i] == "-" {
            result -= operands[i]
        } else if operators[i] == "*" {
            result *= operands[i]
        } else if operators[i] == "//" {
            result = result // operands[i]
        } else if operators[i] == "**" {
            result = result ** operands[i]
        }
    }
    return result
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result
}
```swift
// Given two arrays operators, and operands. The first array has basic algebra operations, and 
// the second array is an array of integers. Use the two given arrays to build the algebric 
// expression and return the evaluation of this expression.
// The basic algebra operations:
// Addition ( + ) 
// Subtraction ( - ) 
// Multiplication ( * ) 
// Floor division ( // ) 
// Exponentiation ( ** ) 
// Example:
// operator['+', '*', '-']
// array = [2, 3, 4, 5]
// result = 2 + 3 * 4 - 5
// => result = 9
// Note:
// The length of operator array is equal to the length of operand array minus one.
// Operand is an array of of non-negative integers.
// Operator array has at least one operator, and operand array has at least two operands.
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = 0
    for i in 0..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result // operands[i]
        case "**":
            result = result ** operands[i]
        default:
            break
        }
    }
    return result
}
```
result = result // operands[i] // assigning a variable to itself
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
    
    
    var result = [String(
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
    
    
    
    
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
    
    
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
    
    var
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
    
    var result = [String(s
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
    
    var result = ""
    
    
    for i
    
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 if s[i] is a letter, reverse its case from lower to upper or vise versa, 
 otherwise keep it as it is.
 If the string contains no letters, reverse the string.
 The function should return the resulted string.
 Examples
 solve(s: "1234") == "4321"
 solve(s: "ab") == "AB"
 solve(s: "#a@C") == "#A@c"
 */
func solve(s: String) -> String {
XCTAssertTrue(solve(s: "AsDf") == "aSdF") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "1234") == "4321") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "ab") == "AB") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#a@C") == "#A@c") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#AsdfW^45") == "#aSDFw^45") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#6@2") == "2@6#") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#$a^D") == "#$A^d") // cannot find 'solve' in scope
XCTAssertTrue(solve(s: "#ccc") == "#CCC") // cannot find 'solve' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    return
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
    
    
    
    
    guard let hasherr = try {
    
    
    
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    guard
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
    guard let data = [
    
    let data = NSData(
    let data = Data(lhs
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    guard let count = lhs = l
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
    guard
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import CommonCrypto

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string 'text', return its md5 hash equivalent string.
 If 'text' is an empty string, return nil.
 stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
 */
func stringToMd5(text: String) -> String? {
    
    
    
    
    guard
XCTAssertTrue(stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "") == nil) // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "A B C") == "0ef78513b0cb8cef12743f5aeb35f888") // cannot find 'stringToMd5' in scope
XCTAssertTrue(stringToMd5(text: "password") == "5f4dcc3b5aa765d61d8327deb882cf99") // cannot find 'stringToMd5' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
    
    
    
    
    
    var
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
    
    var result = []
    for i in a in
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
    
    var result = [Int]()
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given two positive integers a and b, return the even digits between a
 and b, in ascending order.
 For example:
 generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
 generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
 generateIntegers(a: 10, b: 14) == [] as [Int]
 */
func generateIntegers(a: Int, b: Int) -> [Int] {
XCTAssertTrue(generateIntegers(a: 2, b: 10) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope
XCTAssertTrue(generateIntegers(a: 10, b: 2) == [2, 4, 6, 8, 10]) // cannot find 'generateIntegers' in scope