Metadata

Key Value
engine mlx
prompt completion
temp 0.2
top_p 0.95
max_new_tokens 1024
n_completions 10

Solutions

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
    var row = 0
    var row in 0..<
    
    0
    
    for i
    = 0
    for
    0
    for
    for
    for
    for
    for
    for
    for
    for
    for
    for
    row
    for
    var
    row
    row
col
col
col
    in
col
col
col
    in
col
    in
    0
    in
    in
    0
    in
    0
    0
    0
    in
    0
    in
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
        
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    
    for i in
    
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    for i inout
    
    var result
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    var result = [[Double]()
    for
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if in given array of numbers, are any two numbers closer to each other than
 given threshold.
 hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
 hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
 */
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    
    
    
    for i in
    for i in 0..<
    for j in 0..<
    for
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.3) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2], threshold: 0.05) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.95) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0], threshold: 0.8) == false) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0], threshold: 0.1) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 1.0) == true) // cannot find 'hasCloseElements' in scope
XCTAssertTrue(hasCloseElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1], threshold: 0.5) == false) // cannot find 'hasCloseElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    
    var result = [
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    var result = [String()
    var current = ""
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    
    
    
    var result = []
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    var result = [String(
    var stack
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
    var result = [String
    
    
    for paren = [String()
    
    var stack
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
 separate those group into separate strings and return the array of those.
 Separate groups are balanced (each open brace is properly closed) and not nested within each other
 Ignore any spaces in the input string.
 separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
 */
func separateParenGroups(parenString: String) -> [String] {
    
XCTAssertTrue(separateParenGroups(parenString: "(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "(()(())((())))") == ["(()(())((())))"]) // cannot find 'separateParenGroups' in scope
XCTAssertTrue(separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) // cannot find 'separateParenGroups' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    
    var result = [[Double](repepairsultipleased on {
    for i
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    var result =
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    
    var result = [[
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    guard let lhs = [[Double](repeating lhs = [[Double] = Double](
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive floating point number, it can be decomposed into
 and integer part (largest integer smaller than given number) and decimals
 (leftover part always smaller than 1).
 Return the decimal part of the number.
 truncateNumber(number: 3.5) == 0.5
 */
func truncateNumber(number: Double) -> Double {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(truncateNumber(number: 3.5) == 0.5) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 1.25) == 0.25) // cannot find 'truncateNumber' in scope
XCTAssertTrue(truncateNumber(number: 123.0) == 0.0) // cannot find 'truncateNumber' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance = 0
    for operation in operations.count
    
    balance = 0
    for operation
    balance
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    
    
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    var balance = 0
    for operation in operations = 0
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance =
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You're given an array of deposit and withdrawal operations on a bank account that starts with
 zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
 at that point function should return true. Otherwise it should return false.
 belowZero(operations: [1, 2, 3]) == false
 belowZero(operations: [1, 2, -4, 5]) == true
 */
func belowZero(operations: [Int]) -> Bool {
    
    
    var balance = 0
    for i in
XCTAssertTrue(belowZero(operations: [] as [Int]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -3, 1, 2, -3]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, 2, -4, 5, 6]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -4]) == false) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -1, 2, -2, 5, -5, 4, -5]) == true) // cannot find 'belowZero' in scope
XCTAssertTrue(belowZero(operations: [1, -2, 2, -2, 5, -5, 4, -4]) == true) // cannot find 'belowZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    var sum = 0
    
    
    var sum = 0
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    
    var sum =
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    var sum = 0
    for i
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    var sum = 0
    for i = 0
    var mean = 0
    var mean
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of input numbers, calculate Mean Absolute Deviation
 around the mean of this dataset.
 Mean Absolute Deviation is the average absolute difference between each
 element and a centerpoint (mean in this case):
 MAD = average | x - x_mean |
 meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
 */
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    
    
    
    
    var sum = 0
    for i = 0
    var sum = 0
    for i
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0]) == 0.5) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0) // cannot find 'meanAbsoluteDeviation' in scope
XCTAssertTrue(meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) // cannot find 'meanAbsoluteDeviation' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    var result = [[Double]()
    var result = [
    for i in
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
    
    var result = [
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    var result = [
    var result = [
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    
    
    
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
 intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
 intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
 */
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
XCTAssertTrue(intersperse(numbers: [] as [Int], delimeter: 7) == [] as [Int]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [5, 6, 3, 2], delimeter: 8) == [5, 8, 6, 8, 3, 8, 2]) // cannot find 'intersperse' in scope
XCTAssertTrue(intersperse(numbers: [2, 2, 2], delimeter: 2) == [2, 2, 2, 2, 2]) // cannot find 'intersperse' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    var result = [Int.
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack =
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    var result = [Int
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    var stack = [Int.init()
    
    var stack = [Int
    
    for
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack = [
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    
    var stack = [Int.init()
    
    
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    
    
    var stack = [Int
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
 For each of the group, output the deepest level of nesting of parentheses.
 E.g. (()()) has maximum two levels of nesting while ((())) has three.
 parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
 */
func parseNestedParens(parenString: String) -> [Int] {
    
    
    
    
    
    var stack = [
XCTAssertTrue(parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "() (()) ((())) (((())))") == [1, 2, 3, 4]) // cannot find 'parseNestedParens' in scope
XCTAssertTrue(parseNestedParens(parenString: "(()(())((())))") == [4]) // cannot find 'parseNestedParens' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    for (
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    var result = [[String]()
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
    for string in
    for string in
    
    
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
    
    
    
    
    var result = []
    
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that contain given substring
 filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
 filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
 */
func filterBySubstring(strings: [String], substring: String) -> [String] {
XCTAssertTrue(filterBySubstring(strings: [] as [String], substring: "john") == [] as [String]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], substring: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], substring: "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) // cannot find 'filterBySubstring' in scope
XCTAssertTrue(filterBySubstring(strings: ["grunt", "trumpet", "prune", "gruesome"], substring: "run") == ["grunt", "prune"]) // cannot find 'filterBySubstring' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    var sum = 0
    var sum = 0
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    var sum = 0
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    var
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
    
    
    var sum = 0
    var sum = 0
    var product = 1
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
    
    
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
 Empty sum should be equal to 0 and empty product should be equal to 1.
 sumProduct(numbers: [] as [Int]) == (0, 1)
 sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
 */
func sumProduct(numbers: [Int]) -> (Int, Int) {
XCTAssertTrue(sumProduct(numbers: [] as [Int]) == (0, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [1, 1, 1]) == (3, 1)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [100, 0]) == (100, 0)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [3, 5, 7]) == (15, 105)) // cannot find 'sumProduct' in scope
XCTAssertTrue(sumProduct(numbers: [10]) == (10, 10)) // cannot find 'sumProduct' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max = [
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    var maxes = [Int.init()
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int.init()
    for i in
    for i in 0..<
    for i in 0..<numbers.count
    for
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max =
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    
    var max = [Int.init()
    for i in
    for i in 0..<
    var max
    var max
    
    for i
    var max
    max
    var
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a given array of integers, generate an array of rolling maximum element found until given moment
 in the sequence.
 rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
 */
func rollingMax(numbers: [Int]) -> [Int] {
    
    
    var maxesultimate
XCTAssertTrue(rollingMax(numbers: [] as [Int]) == [] as [Int]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [4, 3, 2, 1]) == [4, 4, 4, 4]) // cannot find 'rollingMax' in scope
XCTAssertTrue(rollingMax(numbers: [3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) // cannot find 'rollingMax' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
    
    var result = [[
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    var result = [Double.init()
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find the shortest palindrome that begins with a supplied string.
 Algorithm idea is simple:
 - Find the longest postfix of supplied string that is a palindrome.
 - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
 makePalindrome(string: "") == ""
 makePalindrome(string: "cat") == "catac"
 makePalindrome(string: "cata") == "catac"
 */
func makePalindrome(string: String) -> String {
    
    
    return string = [
XCTAssertTrue(makePalindrome(string: "") == "") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "x") == "x") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyz") == "xyzyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "xyx") == "xyx") // cannot find 'makePalindrome' in scope
XCTAssertTrue(makePalindrome(string: "jerry") == "jerryrrej") // cannot find 'makePalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    var result = [[Double]()
    for
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    
    
    var result = [[
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    var result = [[Double]()
    for (0
    for (0
    
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input are two strings a and b consisting only of 1s and 0s.
 Perform binary XOR on these inputs and return result also as a string.
 stringXor(a: "010", b: "110") == "100"
 */
func stringXor(a: String, b: String) -> String {
    
    
    
    var result = [[Double](repeekse
    for i in
    for (a
XCTAssertTrue(stringXor(a: "111000", b: "101010") == "010010") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "1", b: "1") == "0") // cannot find 'stringXor' in scope
XCTAssertTrue(stringXor(a: "0101", b: "0000") == "0101") // cannot find 'stringXor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    for i in
    
    
        
    var maxLength
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    
    guard strings.forEach {
        
        
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    for i in
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    guard let result = [[Double](repeeksegments = [[Double]
    
    
    
    
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
    
    
    
    
    
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Out of array of strings, return the longest one. Return the first one in case of multiple
 strings of the same length. Return nil in case the input array is empty.
 longest(strings: [] as [String]) == nil
 longest(strings: ["a", "b", "c"]) == "a"
 longest(strings: ["a", "bb", "ccc"]) == "ccc"
 */
func longest(strings: [String]) -> String? {
XCTAssertTrue(longest(strings: [] as [String]) == nil) // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "y", "z"]) == "x") // cannot find 'longest' in scope
XCTAssertTrue(longest(strings: ["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") // cannot find 'longest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    
    for i in Swift
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    for i in Swift.
    var result = [[Double](repe
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a greatest common divisor of two integers a and b
 greatestCommonDivisor(a: 3, b: 5) == 1
 greatestCommonDivisor(a: 25, b: 15) == 5
 */
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    
    
    
    for i in Swift.
    for i
    
    
    
    
XCTAssertTrue(greatestCommonDivisor(a: 3, b: 7) == 1) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 10, b: 15) == 5) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 49, b: 14) == 7) // cannot find 'greatestCommonDivisor' in scope
XCTAssertTrue(greatestCommonDivisor(a: 144, b: 60) == 12) // cannot find 'greatestCommonDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = []
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [String(
    for i in
    for i in 0..<
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    var result = [[Double]()
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = [[Double]()
    for i in
    for
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of all prefixes from shortest to longest of the input string
 allPrefixes(string: "abc") == ["a", "ab", "abc"]
 */
func allPrefixes(string: String) -> [String] {
    
    
    
    
    var result = []
    for i = []
    
    for i
XCTAssertTrue(allPrefixes(string: "") == [] as [String]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) // cannot find 'allPrefixes' in scope
XCTAssertTrue(allPrefixes(string: "WWW") == ["W", "WW", "WWW"]) // cannot find 'allPrefixes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    
    
    
    var result
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    
    
    for i in 0..<#1..<
    
    var result
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    for i in 0..
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return a string containing space-delimited numbers starting from 0 upto n inclusive.
 stringSequence(n: 0) == "0"
 stringSequence(n: 5) == "0 1 2 3 4 5"
 */
func stringSequence(n: Int) -> String {
XCTAssertTrue(stringSequence(n: 0) == "0") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 3) == "0 1 2 3") // cannot find 'stringSequence' in scope
XCTAssertTrue(stringSequence(n: 10) == "0 1 2 3 4 5 6 7 8 9 10") // cannot find 'stringSequence' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [Double
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [[Double.
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [Double
    
    
    for i
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    var result = [[Double]()
    
    
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    var result = [[Double]
    for i in
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a string, find out how many distinct characters (regardless of case) does it consist of
 countDistinctCharacters(string: "xyzXYZ") == 3
 countDistinctCharacters(string: "Jerry") == 4
 */
func countDistinctCharacters(string: String) -> Int {
    
    
    
    
    
XCTAssertTrue(countDistinctCharacters(string: "") == 0) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcde") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "abcdecadeCADE") == 5) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "aaaaAAAAaaaa") == 1) // cannot find 'countDistinctCharacters' in scope
XCTAssertTrue(countDistinctCharacters(string: "Jerry jERRY JeRRRY") == 5) // cannot find 'countDistinctCharacters' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
    
    var result = [Int.init()
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int]()
    
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int.init()
    for character in musicString(musicString(musicString(musicString
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int()
    for char in music = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    var result = [Int.init(repeating: Int]()
    
    for character
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input to this function is a string representing musical notes in a special ASCII format.
 Your task is to parse this string and return array of integers corresponding to how many beats does each
 not last.
 Here is a legend:
 'o' - whole note, lasts four beats
 'o|' - half note, lasts two beats
 '.|' - quater note, lasts one beat
 parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
 */
func parseMusic(musicString: String) -> [Int] {
    
    
    var result = [
XCTAssertTrue(parseMusic(musicString: "") == [] as [Int]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o o o o") == [4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: ".| .| .| .|") == [1, 1, 1, 1]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) // cannot find 'parseMusic' in scope
XCTAssertTrue(parseMusic(musicString: "o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) // cannot find 'parseMusic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count =
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    var count = 0
    for i
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count =
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Find how many times a given substring can be found in the original string. Count overlaping cases.
 howManyTimes(string: "", substring: "a") == 0
 howManyTimes(string: "aaa", substring: "a") == 3
 howManyTimes(string: "aaaa", substring: "aa") == 3
 */
func howManyTimes(string: String, substring: String) -> Int {
    
    
    
    
    
    var count
XCTAssertTrue(howManyTimes(string: "", substring: "x") == 0) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "xyxyxyx", substring: "x") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "cacacacac", substring: "cac") == 4) // cannot find 'howManyTimes' in scope
XCTAssertTrue(howManyTimes(string: "john doe", substring: "john") == 1) // cannot find 'howManyTimes' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    return numbers = numbers = [String(numbers.split(
    
   .
    
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    
    var sorted
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    var sortedNumbers = [String(numbers
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    var result = [String(lazy
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    
    
    var result = ""
    
    
    
    
    
    
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
    
    
    
    
    var sorted = [Double.init
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Input is a space-delimited string of numberals from 'zero' to 'nine'.
 Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
 Return the string with numbers sorted from smallest to largest
 sortNumbers(numbers: "three one five") == "one three five"
 */
func sortNumbers(numbers: String) -> String {
XCTAssertTrue(sortNumbers(numbers: "") == "") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three") == "three") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "three five nine") == "three five nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "five zero four seven nine eight") == "zero four five seven eight nine") // cannot find 'sortNumbers' in scope
XCTAssertTrue(sortNumbers(numbers: "six five four three two one zero") == "zero one two three four five six") // cannot find 'sortNumbers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    var minDifference = Double.max = Double
    = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    
    var minDifference = Double.maxDifference = Double
    
    var min = Double
    var min = Double
    var min = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    
    var minDifference = Double, max
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
    var minDifference = Double
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From a supplied array of numbers (of length at least two) select and return two that are the closest to each
 other and return them in order (smaller number, larger number).
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
 findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
 */
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    
    
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) // cannot find 'findClosestElements' in scope
XCTAssertTrue(findClosestElements(numbers: [1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) // cannot find 'findClosestElements' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    var min = [Double]
    return numbers.map(
    var min
    for
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    
    var min, max
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
    
    
    
    
    var min = [Double]
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of numbers (of at least two elements), apply a linear transform to that array,
 such that the smallest number will become 0 and the largest will become 1
 rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
 */
func rescaleToUnit(numbers: [Double]) -> [Double] {
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 49.9]) == [0.0, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [100.0, 49.9]) == [1.0, 0.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope
XCTAssertTrue(rescaleToUnit(numbers: [12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) // cannot find 'rescaleToUnit' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = []
    for value
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = [Int.init(repeektring
    for value in values.
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result =
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var result = [
    for value
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
    
    var filteredValues
    
    
    
    
    
    var result = [
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter given array of any swiftthon values only for integers
 filterIntegers(values: ["a", 3.14, 5]) == [5]
 filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
 */
func filterIntegers(values: [AnyHashable]) -> [Int] {
    
    
XCTAssertTrue(filterIntegers(values: [] as [AnyHashable]) == [] as [Int]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [4, [:] as [AnyHashable : AnyHashable], [] as [AnyHashable], 23.2, 9, "adasd"]) == [4, 9]) // cannot find 'filterIntegers' in scope
XCTAssertTrue(filterIntegers(values: [3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) // cannot find 'filterIntegers' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    
    return result = [[Double]
    for i in
    
    
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    var rowCount
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
    
    
    
    
    
    
    var
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return length of given string
 strlen(string: "") == 0
 strlen(string: "abc") == 3
 */
func strlen(string: String) -> Int {
XCTAssertTrue(strlen(string: "") == 0) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "x") == 1) // extraneous argument label 'string:' in call
XCTAssertTrue(strlen(string: "asdasnakj") == 9) // extraneous argument label 'string:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    var rowCount.init()
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    
    
    for i in
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
    
    var rowCount
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given number n, find the largest number that divides n evenly, smaller than n
 largestDivisor(n: 15) == 5
 */
func largestDivisor(n: Int) -> Int {
    
    
XCTAssertTrue(largestDivisor(n: 3) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 7) == 1) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 10) == 5) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 100) == 50) // cannot find 'largestDivisor' in scope
XCTAssertTrue(largestDivisor(n: 49) == 7) // cannot find 'largestDivisor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors = [Int.init()
    
    for i = []
    
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    
    for i in
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    var factors = [Int.init()
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    for i in range =
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var factors = [
    for i = [Int](re
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    for i inout
    return [
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array of prime factors of given integer in the order from smallest to largest.
 Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
 Input number should be equal to the product of all factors
 factorize(n: 8) == [2, 2, 2]
 factorize(n: 25) == [5, 5]
 factorize(n: 70) == [2, 5, 7]
 */
func factorize(n: Int) -> [Int] {
    
    
    
    
    var factors = [Int.
XCTAssertTrue(factorize(n: 2) == [2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 4) == [2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 8) == [2, 2, 2]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 57) == [3, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 3249) == [3, 3, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 185193) == [3, 3, 3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 20577) == [3, 19, 19, 19]) // cannot find 'factorize' in scope
XCTAssertTrue(factorize(n: 18) == [2, 3, 3]) // cannot find 'factorize' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    var result = [
    for i in
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int.init
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [Int]
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    var result = [Int.
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    
    var result = [
    
    for i
    for i
    =
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
    
    var result = [
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 From an array of integers, remove all elements that occur more than once.
 Keep order of elements left the same as in the input.
 removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
 */
func removeDuplicates(numbers: [Int]) -> [Int] {
    
    
XCTAssertTrue(removeDuplicates(numbers: [] as [Int]) == [] as [Int]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 4]) == [1, 2, 3, 4]) // cannot find 'removeDuplicates' in scope
XCTAssertTrue(removeDuplicates(numbers: [1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) // cannot find 'removeDuplicates' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
    
    for i in
    for i in 0..<
    var row in 0..< lhs
    result =
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
    
    
    
    
    
    var result = [[Double]
    
    
    
    
    
    
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
 flipCase(string: "Hello") == "hELLO"
 */
func flipCase(string: String) -> String {
XCTAssertTrue(flipCase(string: "") == "") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "Hello!") == "hELLO!") // cannot find 'flipCase' in scope
XCTAssertTrue(flipCase(string: "These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") // cannot find 'flipCase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    var rowCount.
    var
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
    
    
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    
    
    
    var
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
    
    
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Concatenate array of strings into a single string
 concatenate(strings: [] as [String]) == ""
 concatenate(strings: ["a", "b", "c"]) == "abc"
 */
func concatenate(strings: [String]) -> String {
XCTAssertTrue(concatenate(strings: [] as [String]) == "") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z"]) == "xyz") // cannot find 'concatenate' in scope
XCTAssertTrue(concatenate(strings: ["x", "y", "z", "w", "k"]) == "xyzwk") // cannot find 'concatenate' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    var result = [[Double]
    
    
    for s
    
    
    
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    
    var result
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
    
    
    
    var result = [String(
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Filter an input array of strings only for ones that start with a given prefix.
 filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
 filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
 */
func filterByPrefix(strings: [String], prefix: String) -> [String] {
XCTAssertTrue(filterByPrefix(strings: [] as [String], prefix: "john") == [] as [String]) // cannot find 'filterByPrefix' in scope
XCTAssertTrue(filterByPrefix(strings: ["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], prefix: "xxx") == ["xxx", "xxxAAA", "xxx"]) // cannot find 'filterByPrefix' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    var positive = [[Double](repeekse
    for i
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    var result = []
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [
    for i in
    for i
    
    var
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return only positive numbers in the array.
 getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
 getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
 */
func getPositive(l: [Int]) -> [Int] {
XCTAssertTrue(getPositive(l: [-1, -2, 4, 5, 6]) == [4, 5, 6]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [-1, -2]) == [] as [Int]) // cannot find 'getPositive' in scope
XCTAssertTrue(getPositive(l: [] as [Int]) == [] as [Int]) // cannot find 'getPositive' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in
    
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in
    
    for i in 0..
    
    
    0..
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i in 1..<
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i in 0..<code
    var i
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    
    for i
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in 1..
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if a given number is prime, and false otherwise.
 isPrime(n: 6) == false
 isPrime(n: 101) == true
 isPrime(n: 11) == true
 isPrime(n: 13441) == true
 isPrime(n: 61) == true
 isPrime(n: 4) == false
 isPrime(n: 1) == false
 */
func isPrime(n: Int) -> Bool {
    
    
    
    for i in 0..<
    
XCTAssertTrue(isPrime(n: 6) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 101) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 13441) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 61) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 4) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 1) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 5) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 11) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 17) == true) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 85) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 77) == false) // cannot find 'isPrime' in scope
XCTAssertTrue(isPrime(n: 255379) == false) // cannot find 'isPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    
    
    var result = [
    for (0..
    for i in 0..<
    for i in l
    l
    in 0..l
    
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in 0..< l.count {
    
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in 0..<lhs.count {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    
    for i in the result = [lhs
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i in
    for
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    var result = [Int.repeektring l = l
    for i in 0
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
    
    for i inout
    for i in 0..< l.count {
    if i < l.count {
    l
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
 to the values of the corresponding indicies of l, but sorted.
 sortThird(l: [1, 2, 3]) == [1, 2, 3]
 sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
 */
func sortThird(l: [Int]) -> [Int] {
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) // cannot find 'sortThird' in scope
XCTAssertTrue(sortThird(l: [5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) // cannot find 'sortThird' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    guard lhs = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double]()
    
    
    for i in
    
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique elements in an array
 unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
 */
func unique(l: [Int]) -> [Int] {
    
    
    var
XCTAssertTrue(unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) // cannot find 'unique' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    var row = [[Double](repeeksegments = [[Double](repelements = Double](repelements = Double](repelements
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double](repe
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    var result = [[Double](repeekse
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    for i in
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    var result = [[Double](repeekse
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    for i in
    
    var row in 0.. lhs
    
    
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    for i inout
    
    var result = [[
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    for i inout
    var result = [[Double](repe
    for i in l
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return maximum element in the array.
 maxElement(l: [1, 2, 3]) == 3
 maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
 */
func maxElement(l: [Int]) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(maxElement(l: [1, 2, 3]) == 3) // cannot find 'maxElement' in scope
XCTAssertTrue(maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) // cannot find 'maxElement' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var fizz = [[Double
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    for i in
    
    for
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    var count = 0
    for i
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
 fizzBuzz(n: 50) == 0
 fizzBuzz(n: 78) == 2
 fizzBuzz(n: 79) == 3
 */
func fizzBuzz(n: Int) -> Int {
    
    
XCTAssertTrue(fizzBuzz(n: 50) == 0) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 78) == 2) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 79) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100) == 3) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 200) == 6) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 4000) == 192) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 10000) == 639) // cannot find 'fizzBuzz' in scope
XCTAssertTrue(fizzBuzz(n: 100000) == 8026) // cannot find 'fizzBuzz' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    return [
    var result =
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    var result = [
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    
    return l = [[Double]
    var result = [[Double]
    
    for
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 This function takes an array l and returns an array l' such that
 l' is identical to l in the odd indicies, while its values at the even indicies are equal
 to the values of the even indicies of l, but sorted.
 sortEven(l: [1, 2, 3]) == [1, 2, 3]
 sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
 */
func sortEven(l: [Int]) -> [Int] {
    
XCTAssertTrue(sortEven(l: [1, 2, 3]) == [1, 2, 3]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) // cannot find 'sortEven' in scope
XCTAssertTrue(sortEven(l: [5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) // cannot find 'sortEven' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    var matrix = [[Double](re
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 prime_fib returns n-th number that is a Fibonacci number and it's also prime.
 primeFib(n: 1) == 2
 primeFib(n: 2) == 3
 primeFib(n: 3) == 5
 primeFib(n: 4) == 13
 primeFib(n: 5) == 89
 */
func primeFib(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(primeFib(n: 1) == 2) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 2) == 3) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 3) == 5) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 4) == 13) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 5) == 89) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 6) == 233) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 7) == 1597) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 8) == 28657) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 9) == 514229) // cannot find 'primeFib' in scope
XCTAssertTrue(primeFib(n: 10) == 433494437) // cannot find 'primeFib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    for i inout:
    for i in
    out
        for
        for j
        for k
        
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<
    for i
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    for i in 0..<
    for i in
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<|
    
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
    
    
    for i in
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 triples_sum_to_zero takes an array of integers as an input.
 it returns true if there are three distinct elements in the array that
 sum to zero, and false otherwise.
 triplesSumToZero(l: [1, 3, 5, 0]) == false
 triplesSumToZero(l: [1, 3, -2, 1]) == true
 triplesSumToZero(l: [1, 2, 3, 7]) == false
 triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
 triplesSumToZero(l: [1]) == false
 */
func triplesSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, -2, 1]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 2, 5, 7]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [1, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope
XCTAssertTrue(triplesSumToZero(l: [100, 3, 5, -100]) == false) // cannot find 'triplesSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    
    var collisions = 0
    for
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    for i in 0..
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    
    var result = [[Double](re
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
    
    
    var result =
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Imagine a road that's a perfectly straight infinitely long line.
 n cars are driving left to right;  simultaneously, a different set of n cars
 are driving right to left.   The two sets of cars start out being very far from
 each other.  All cars move in the same speed.  Two cars are said to collide
 when a car that's moving left to right hits a car that's moving right to left.
 However, the cars are infinitely sturdy and strong; as a result, they continue moving
 in their trajectory as if they did not collide.
 This function outputs the number of such collisions.
 */
func carRaceCollision(n: Int) -> Int {
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result = [[Double](repe
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    
    var result = [[Double]
    for i in
    for i in 0..<
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return array with elements incremented by 1.
 incrList(l: [1, 2, 3]) == [2, 3, 4]
 incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
 */
func incrList(l: [Int]) -> [Int] {
    
    
    
    var result = [[Double]()
XCTAssertTrue(incrList(l: [] as [Int]) == [] as [Int]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [3, 2, 1]) == [4, 3, 2]) // cannot find 'incrList' in scope
XCTAssertTrue(incrList(l: [5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) // cannot find 'incrList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    
    for i inout:
    for i in
    out
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    var result = [[Double]()
    for i in
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    for (i in 0..< lhs.forEach {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    var l = [[Double]
    for i in lhs = [Double]
    for i in 0..lhs = l
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    for i inout:
    for i in
    for
    for
        out
        for j
        for
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 pairs_sum_to_zero takes an array of integers as an input.
 it returns true if there are two distinct elements in the array that
 sum to zero, and false otherwise.
 pairsSumToZero(l: [1, 3, 5, 0]) == false
 pairsSumToZero(l: [1, 3, -2, 1]) == false
 pairsSumToZero(l: [1, 2, 3, 7]) == false
 pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
 pairsSumToZero(l: [1]) == false
 */
func pairsSumToZero(l: [Int]) -> Bool {
    
    
    for i in 0..<
    for i in 0..< l.count {
XCTAssertTrue(pairsSumToZero(l: [1, 3, 5, 0]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 3, -2, 1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1, 2, 3, 7]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [1]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 30]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 3, 2, 31]) == true) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 30]) == false) // cannot find 'pairsSumToZero' in scope
XCTAssertTrue(pairsSumToZero(l: [-3, 9, -1, 4, 2, 31]) == false) // cannot find 'pairsSumToZero' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    
    var result = [
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    var result = [[Double](repep = [[Double]
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
    
    
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
    
    
    
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Change numerical base of input number x to base.
 return string representation after the conversion.
 base numbers are less than 10.
 changeBase(x: 8, base: 3) == "22"
 changeBase(x: 8, base: 2) == "1000"
 changeBase(x: 7, base: 2) == "111"
 */
func changeBase(x: Int, base: Int) -> String {
XCTAssertTrue(changeBase(x: 8, base: 3) == "22") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 9, base: 3) == "100") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 234, base: 2) == "11101010") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 16, base: 2) == "10000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 8, base: 2) == "1000") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 2) == "111") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 2, base: 3) == "2") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 3, base: 4) == "3") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 4, base: 5) == "4") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 5, base: 6) == "5") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 6, base: 7) == "6") // cannot find 'changeBase' in scope
XCTAssertTrue(changeBase(x: 7, base: 8) == "7") // cannot find 'changeBase' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
    var result = [[
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    var result = [[Double
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
    
    
    
    
    
    var result = [[Double](repepairsed
    for
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given length of a side and high return area for a triangle.
 triangleArea(a: 5, h: 3) == 7.5
 */
func triangleArea(a: Int, h: Int) -> Double {
XCTAssertTrue(triangleArea(a: 5, h: 3) == 7.5) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, h: 2) == 2.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, h: 8) == 40.0) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
    switch n
    guard n
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    var fib4(n:
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
    
    
    
    switch n:
    
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fib4(0) -> 0
 fib4(1) -> 0
 fib4(2) -> 2
 fib4(3) -> 0
 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
 Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
 fib4(n: 5) == 4
 fib4(n: 6) == 8
 fib4(n: 7) == 14
 */
func fib4(n: Int) -> Int {
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    
    var l = [[
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
    var result = [[Double]()
    for i in
    
Double](repe
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return median of elements in the array l.
 median(l: [3, 1, 2, 4, 5]) == 3
 median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
 */
func median(l: [Int]) -> Double {
    
    
    
    
XCTAssertTrue(median(l: [3, 1, 2, 4, 5]) == 3) // cannot find 'median' in scope
XCTAssertTrue(median(l: [-10, 4, 6, 1000, 10, 20]) == 8.0) // cannot find 'median' in scope
XCTAssertTrue(median(l: [5]) == 5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [6, 5]) == 5.5) // cannot find 'median' in scope
XCTAssertTrue(median(l: [8, 1, 3, 9, 9, 2, 7]) == 7) // cannot find 'median' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    
    var result
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    
    var result =
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result =
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
Double](
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[Double]()
    for i in
    for
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Checks if given string is a palindrome
 isPalindrome(text: "") == true
 isPalindrome(text: "aba") == true
 isPalindrome(text: "aaaaa") == true
 isPalindrome(text: "zbcd") == false
 */
func isPalindrome(text: String) -> Bool {
    
    
    
    
    
    var result = [[Double](repeekse
    for i in
    for
XCTAssertTrue(isPalindrome(text: "") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aba") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "aaaaa") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "zbcd") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyx") == true) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywyz") == false) // cannot find 'isPalindrome' in scope
XCTAssertTrue(isPalindrome(text: "xywzx") == false) // cannot find 'isPalindrome' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    
    var result = [[Double]
    for i in
    for i in
    
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    var result = [[Double
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    var result = [[Double](repeek
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return 2^n modulo p (be aware of numerics).
 modp(n: 3, p: 5) == 3
 modp(n: 1101, p: 101) == 2
 modp(n: 0, p: 101) == 1
 modp(n: 3, p: 11) == 8
 modp(n: 100, p: 101) == 1
 */
func modp(n: Int, p: Int) -> Int {
    
    
    
    
    for i inout
    
XCTAssertTrue(modp(n: 3, p: 5) == 3) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 1101, p: 101) == 2) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 0, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 3, p: 11) == 8) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 100, p: 101) == 1) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 30, p: 5) == 4) // cannot find 'modp' in scope
XCTAssertTrue(modp(n: 31, p: 5) == 3) // cannot find 'modp' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    var newText = ""
    for c in text =
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    var result = ""
    for c in text = ""
    for char
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    
    var result = [[Double]
    for i
    for i in 0
    for
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    var result = [[Double.
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    guard l
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    for i in 0..<
    for c in 0..<text.count {
    if
    if
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 remove_vowels is a function that takes string and returns string without vowels.
 removeVowels(text: "") == ""
 removeVowels(text: "abcdef") == "bcdf"
 removeVowels(text: "aaaaa") == ""
 removeVowels(text: "aaBAA") == "B"
 removeVowels(text: "zbcd") == "zbcd"
 */
func removeVowels(text: String) -> String {
    
    
    
    
    
    
    var result = [[Double]
    for i
    
    
XCTAssertTrue(removeVowels(text: "") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "abcdef\nghijklm") == "bcdf\nghjklm") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "fedcba") == "fdcb") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "eeeee") == "") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "acBAA") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "EcBOO") == "cB") // cannot find 'removeVowels' in scope
XCTAssertTrue(removeVowels(text: "ybcd") == "ybcd") // cannot find 'removeVowels' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    for i in
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    for i in
    return l
    var row =
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    for i in 0
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    var result = [[Double
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    for i in 0..<
    for i
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    for i in
    
        
    var row
    
    var
    var
    var
    
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true if all numbers in the array l are below threshold t.
 belowThreshold(l: [1, 2, 4, 10], t: 100) == true
 belowThreshold(l: [1, 20, 4, 10], t: 5) == false
 */
func belowThreshold(l: [Int], t: Int) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments
    for i in lhs = [[
XCTAssertTrue(belowThreshold(l: [1, 2, 4, 10], t: 100) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 5) == false) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 21) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 20, 4, 10], t: 22) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 11) == true) // cannot find 'belowThreshold' in scope
XCTAssertTrue(belowThreshold(l: [1, 8, 4, 10], t: 10) == false) // cannot find 'belowThreshold' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    for i in lhs = [[Double]
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    var result = [[
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
    
    
    
    for i
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
    
    
    
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Add two numbers x and y
 add(x: 2, y: 3) == 5
 add(x: 5, y: 7) == 12
 */
func add(x: Int, y: Int) -> Int {
XCTAssertTrue(Solution.add(x: 0, y: 1) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 1, y: 0) == 1) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 2, y: 3) == 5) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 5, y: 7) == 12) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(x: 7, y: 5) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    
    
    return true
    for i
    for i
    for i in 0
    for i
    for
    for
    for
    for
    for
    for
    
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    for i in
    for i in
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    var result = [String {
    for i
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    
    
    return s1
    for i in s1
    for i in s1
    for i
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
    
    
    var result = [String {
    for i in
    var result
    for
    for
    
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Check if two words have the same characters.
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
 sameChars(s0: "abcd", s1: "dddddddabc") == true
 sameChars(s0: "dddddddabc", s1: "abcd") == true
 sameChars(s0: "eabcd", s1: "dddddddabc") == false
 sameChars(s0: "abcd", s1: "dddddddabce") == false
 sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
 */
func sameChars(s0: String, s1: String) -> Bool {
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double]
    
    for i in 0..<Double]
    for i in 0
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    
    
    var result
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return n-th Fibonacci number.
 fib(n: 10) == 55
 fib(n: 1) == 1
 fib(n: 8) == 21
 */
func fib(n: Int) -> Int {
    
    
    guard let rows = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs = lhs
XCTAssertTrue(fib(n: 10) == 55) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 1) == 1) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 8) == 21) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 11) == 89) // cannot find 'fib' in scope
XCTAssertTrue(fib(n: 12) == 144) // cannot find 'fib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double]
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [[Double]
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
    var
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double]
    for (Double]
    
    var stack = [
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "<" and ">".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "<") == false
 correctBracketing(brackets: "<>") == true
 correctBracketing(brackets: "<<><>>") == true
 correctBracketing(brackets: "><<>") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "<>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<><>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<<><><>><>><<><><<>>>") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<><>>>>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<<<") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ">") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>><<>") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "<><><<><>><>>><>") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    var result = [[Double](repeekse
    for i in 0..<Double](repe
    
    
    for i in 0..<
    
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    
    
    var result = [[Double]
    for i in
    for i in 0..<
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    for i in
    for i in 0.. l
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    for i inout
    for i in
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return true is array elements are monotonically increasing or decreasing.
 monotonic(l: [1, 2, 4, 20]) == true
 monotonic(l: [1, 20, 4, 10]) == false
 monotonic(l: [4, 1, 0, -10]) == true
 */
func monotonic(l: [Int]) -> Bool {
    
    
    
    var result = [[Double
XCTAssertTrue(monotonic(l: [1, 2, 4, 10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 4, 20]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 20, 4, 10]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 0, -10]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [4, 1, 1, 0]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 2, 5, 60]) == false) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [1, 2, 3, 4, 5, 60]) == true) // cannot find 'monotonic' in scope
XCTAssertTrue(monotonic(l: [9, 9, 9, 9]) == true) // cannot find 'monotonic' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    var result = [Double]()
    for (
    for i in l1
    
    
    
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    var set.union(l1
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int.init(repeekt
    for i in l1
    for i in l1
    for i in l1
    
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    var result = [Int()
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    guard l1
    guard l1
    let count
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    
    
    
    
    var result = [Int](
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return sorted unique common elements for two arrays.
 common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
 common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
 */
func common(l1: [Int], l2: [Int]) -> [Int] {
XCTAssertTrue(common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [3, 2, 4]) == [2, 3, 4]) // cannot find 'common' in scope
XCTAssertTrue(common(l1: [4, 3, 2, 8], l2: [] as [Int]) == [] as [Int]) // cannot find 'common' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    for i in theProduct(
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result =
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double]
    for i in
    
    for i in 0..<
    0..
    =
    =
    =
    
    =
    =
    =
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    for i in range(0..<
    var i in 0..<
    < n
    
    
    
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    for i in 0..<#^
    var i in
    
    
    var i
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Return the largest prime factor of n. Assume n > 1 and is not a prime.
 largestPrimeFactor(n: 13195) == 29
 largestPrimeFactor(n: 2048) == 2
 */
func largestPrimeFactor(n: Int) -> Int {
    
    
    
    
    for i in 0..<#1..< lhs.map {
    // Initialize the
XCTAssertTrue(largestPrimeFactor(n: 15) == 5) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 27) == 3) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 63) == 7) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 330) == 11) // cannot find 'largestPrimeFactor' in scope
XCTAssertTrue(largestPrimeFactor(n: 13195) == 29) // cannot find 'largestPrimeFactor' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
    
    
    
    
    
    var result
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
    
    
    
    
    
    var result = [[
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 sum_to_n is a function that sums numbers from 1 to n.
 sumToN(n: 30) == 465
 sumToN(n: 100) == 5050
 sumToN(n: 5) == 15
 sumToN(n: 10) == 55
 sumToN(n: 1) == 1
 */
func sumToN(n: Int) -> Int {
XCTAssertTrue(sumToN(n: 1) == 1) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 6) == 21) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 11) == 66) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 30) == 465) // cannot find 'sumToN' in scope
XCTAssertTrue(sumToN(n: 100) == 5050) // cannot find 'sumToN' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [Double
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double
    
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    
    var stack = [Double
    var stack =
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    
    var stack = [Double]
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
    
    
    
    var stack = [Double
    
    var stack = [Double]()
    
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 brackets is a string of "(" and ")".
 return true if every opening bracket has a corresponding closing bracket.
 correctBracketing(brackets: "(") == false
 correctBracketing(brackets: "()") == true
 correctBracketing(brackets: "(()())") == true
 correctBracketing(brackets: ")(()") == false
 */
func correctBracketing(brackets: String) -> Bool {
XCTAssertTrue(correctBracketing(brackets: "()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()())") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()((()()())())(()()(()))") == true) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((()())))") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "((((") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: ")") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())())(()") == false) // cannot find 'correctBracketing' in scope
XCTAssertTrue(correctBracketing(brackets: "()()(()())()))()") == false) // cannot find 'correctBracketing' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    
    var result = [[
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    var
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    
    var result =
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    
    var result = [Int.
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    var
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    var result = [0..
    for i in 0..<xs = [0..<
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 xs represent coefficients of a polynomial.
 xs[0] + xs[1] * x + xs[2] * x^2 + ....
 Return derivative of this polynomial in the same form.
 derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
 derivative(xs: [1, 2, 3]) == [2, 6]
 */
func derivative(xs: [Int]) -> [Int] {
    
    
    
    var result = [[Double](repeeksegments = [[Double](repe
    
    
    Double](repeating
XCTAssertTrue(derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1, 2, 3]) == [2, 6]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1]) == [2, 2]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [3, 2, 1, 0, 4]) == [2, 2, 0, 16]) // cannot find 'derivative' in scope
XCTAssertTrue(derivative(xs: [1]) == [] as [Int]) // cannot find 'derivative' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    var a = [[Double](repe
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    var fibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    
    
    
    var fibfibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
 fibfib(0) == 0
 fibfib(1) == 0
 fibfib(2) == 1
 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
 Please write a function to efficiently compute the n-th element of the fibfib number sequence.
 fibfib(n: 1) == 0
 fibfib(n: 5) == 4
 fibfib(n: 8) == 24
 */
func fibfib(n: Int) -> Int {
    
    var fibfibfib
XCTAssertTrue(fibfib(n: 2) == 1) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 1) == 0) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 5) == 4) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 8) == 24) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 10) == 81) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 12) == 274) // cannot find 'fibfib' in scope
XCTAssertTrue(fibfib(n: 14) == 927) // cannot find 'fibfib' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count = 0
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    
    var count = 0
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    var count = 0
    
    for c
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
    
    
    
    
    
    
    var count
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function vowels_count which takes a string representing
 a word as input and returns the number of vowels in the string.
 Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
 vowel, but only when it is at the end of the given word.
 Example:
 vowelsCount(s: "abcde") == 2
 vowelsCount(s: "ACEDY") == 3
 */
func vowelsCount(s: String) -> Int {
XCTAssertTrue(vowelsCount(s: "abcde") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "Alone") == 3) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "key") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bye") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "keY") == 2) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "bYe") == 1) // cannot find 'vowelsCount' in scope
XCTAssertTrue(vowelsCount(s: "ACEDY") == 3) // cannot find 'vowelsCount' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    
    guard let digits
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    var digits = [Double](
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    
    var digits = ""
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
    
    
    
    
    var digits = [Double.init
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Circular shift the digits of the integer x, shift the digits right by shift
 and return the result as a string.
 If shift > number of digits, return digits reversed.
 circularShift(x: 12, shift: 1) == "21"
 circularShift(x: 12, shift: 2) == "12"
 */
func circularShift(x: Int, shift: Int) -> String {
XCTAssertTrue(circularShift(x: 100, shift: 2) == "001") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 2) == "12") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 97, shift: 8) == "79") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 12, shift: 1) == "21") // cannot find 'circularShift' in scope
XCTAssertTrue(circularShift(x: 11, shift: 101) == "11") // cannot find 'circularShift' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var sum = 0
    for i
    var sum = 0
    for
    0
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var result = 0
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var result = [[Double]
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    var sum = 0
    for c
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    var result = 0
    for i = 0
    for c
    for i
    0
    for
    for
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
    
    
    
    
    var sum = 0
    
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Task
 Write a function that takes a string as input and returns the sum of the upper characters only'
 ASCII codes.
 Examples:
 digitSum(s: "") == 0
 digitSum(s: "abAB") == 131
 digitSum(s: "abcCd") == 67
 digitSum(s: "helloE") == 69
 digitSum(s: "woArBld") == 131
 digitSum(s: "aAaaaXa") == 153
 */
func digitSum(s: String) -> Int {
XCTAssertTrue(digitSum(s: "") == 0) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abAB") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "abcCd") == 67) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "helloE") == 69) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "woArBld") == 131) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "aAaaaXa") == 153) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: " How are yOu?") == 151) // cannot find 'digitSum' in scope
XCTAssertTrue(digitSum(s: "You arE Very Smart") == 327) // cannot find 'digitSum' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    
    
    
    
    
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    guard let arr = s.split {
    let arr = s.split {
    let arr = s.components = s.components(s.components(ofString.components(ofString.components(separated
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
    
    
    
    
    
    
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 In this task, you will be given a string that represents a number of apples and oranges 
 that are distributed in a basket of fruit this basket contains 
 apples, oranges, and mango fruits. Given the string that represents the total number of 
 the oranges and apples and an integer that represent the total number of the fruits 
 in the basket return the number of the mango fruits in the basket.
 for examble:
 fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
 fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
 fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
 fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
 */
func fruitDistribution(s: String, n: Int) -> Int {
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "5 apples and 6 oranges", n: 21) == 10) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 0 oranges", n: 3) == 2) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "2 apples and 3 oranges", n: 5) == 0) // cannot find 'fruitDistribution' in scope
XCTAssertTrue(fruitDistribution(s: "1 apples and 100 oranges", n: 120) == 19) // cannot find 'fruitDistribution' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 */
    
    var result = [
    return [
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
    
    var result = [Int
    var result = [
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 return the first the first the first the first the first the first the first node with the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
    return the first the first the first the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 */
    
    
    
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 "Given an array representing a branch of a tree that has non-negative integer nodes
 your task is to pluck one of the nodes and return it.
 The plucked node should be the node with the smallest even value.
 If multiple nodes with the same smallest even value are found return the node that has smallest index.
 The plucked node should be returned in an array, [ smalest_value, its index ],
 If there are no even values or the given array is empty, return [].
 Example 1:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 2:
 Explanation: 2 has the smallest even value, and 2 has the smallest index.
 Example 3:
 Example 4:
 Explanation: 0 is the smallest value, but  there are two zeros,
 so we will choose the first zero, which has the smallest index.
 Constraints:
 * 1 <= nodes.length <= 10000
 * 0 <= node.value
 pluck(arr: [4, 2, 3]) == [2, 1]
 pluck(arr: [1, 2, 3]) == [2, 1]
 pluck(arr: [] as [Int]) == [] as [Int]
 pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
 */
func pluck(arr: [Int]) -> [Int] {
 return the first the first the first the first the
XCTAssertTrue(pluck(arr: [4, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3]) == [2, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [] as [Int]) == [] as [Int]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [1, 2, 3, 0, 5, 3]) == [0, 3]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [5, 4, 8, 4, 8]) == [4, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 6, 7, 1]) == [6, 1]) // cannot find 'pluck' in scope
XCTAssertTrue(pluck(arr: [7, 9, 7, 1]) == [] as [Int]) // cannot find 'pluck' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
    
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
    var max = -1
    for i in
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var count = [Int.init(repeekt = 0
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var max = -1
    for i in lst = 0
    for i in 0, count = 0, count in lst
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
 zero, and has a frequency greater than or equal to the value of the integer itself. 
 The frequency of an integer is the number of times it appears in the array.
 If no such a value exist, return -1.
 Examples:
 search(lst: [4, 1, 2, 2, 3, 1]) == 2
 search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
 search(lst: [5, 5, 4, 4, 4]) == -1
 */
func search(lst: [Int]) -> Int {
    var max = 0
    var count = 0
    for i
XCTAssertTrue(search(lst: [5, 5, 5, 5, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [4, 1, 4, 1, 4, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 3]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 8, 8, 8, 8, 8, 8]) == 8) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 3, 3, 2, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 2, 8, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 3, 6, 5, 6, 4]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 9, 10, 1, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [10]) == -1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) // cannot find 'search' in scope
XCTAssertTrue(search(lst: [3, 10, 10, 9, 2]) == -1) // cannot find 'search' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
    
    var result
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
    var result = [
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    var result = [Int(repe
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given array of integers, return array in strange order.
 Strange sorting, is when you start with the minimum value,
 then maximum of the remaining integers, then minimum and so on.
 Examples:
 strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
 strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
 strangeSortList(lst: [] as [Int]) == [] as [Int]
 */
func strangeSortList(lst: [Int]) -> [Int] {
    
    
    
    
    
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [] as [Int]) == [] as [Int]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) // cannot find 'strangeSortList' in scope
XCTAssertTrue(strangeSortList(lst: [111111]) == [111111]) // cannot find 'strangeSortList' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    guard a = Double(a, b = Double(Double(Double(a
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    
    
    guard let a = [[Double](
    
    
 Double]()
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    
    
    
    
    
    
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given the lengths of the three sides of a triangle. Return the area of
 the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
 Otherwise return -1
 Three sides make a valid triangle when the sum of any two sides is greater 
 than the third side.
 Example:
 triangleArea(a: 3, b: 4, c: 5) == 6.0
 triangleArea(a: 1, b: 2, c: 10) == -1
 */
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    
    
    guard a =
XCTAssertTrue(triangleArea(a: 3, b: 4, c: 5) == 6.0) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 4, b: 8, c: 5) == 8.18) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 2) == 1.73) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 2, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 10, b: 5, c: 7) == 16.25) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 6, c: 3) == -1) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 1, b: 1, c: 1) == 0.43) // cannot find 'triangleArea' in scope
XCTAssertTrue(triangleArea(a: 2, b: 2, c: 10) == -1) // cannot find 'triangleArea' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
        
        [
        [
        [
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
        
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    guard q:
    guard q:
    guard q.count == q.count == 2
    guard q
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    
    
        
        
        
        
        
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    guard q: Double, Double](q: Double](q: [
 Double](q: [
 Double](q: Double](q
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the object q will fly, and false otherwise.
 The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
 Example:
 # 1+2 is less than the maximum possible weight, but it's unbalanced.
 # it's balanced, but 3+2+3 is more than the maximum possible weight.
 # 3+2+3 is less than the maximum possible weight, and it's balanced.
 # 3 is less than the maximum possible weight, and it's balanced.
 willItFly(q: [1, 2], w: 5) == false
 willItFly(q: [3, 2, 3], w: 1) == false
 willItFly(q: [3, 2, 3], w: 9) == true
 willItFly(q: [3], w: 5) == true
 */
func willItFly(q: [Int], w: Int) -> Bool {
    
    guard q:
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 9) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2], w: 5) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3], w: 5) == true) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [3, 2, 3], w: 1) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [1, 2, 3], w: 6) == false) // cannot find 'willItFly' in scope
XCTAssertTrue(willItFly(q: [5], w: 5) == true) // cannot find 'willItFly' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    for i in 0..arr.count = arr.count {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    var min = 0
    for i = 0
    for i = arr = 0
    for i = arr = arr.count
    arr.count
    arr.count
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    
    var count = 0
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var count = 0
    for
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    
    var count = 0
    for i = 0
    
    var
    for i
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    
    
    var count
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
    
    var min = 0
    
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array arr of integers, find the minimum number of elements that
 need to be changed to make the array palindromic. A palindromic array is an array that
 is read the same backwards and forwards. In one change, you can change one element to any other element.
 For example:
 smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
 smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
 smallestChange(arr: [1, 2, 3, 2, 1]) == 0
 */
func smallestChange(arr: [Int]) -> Int {
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 4, 4, 2]) == 1) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1, 2, 3, 2, 1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [3, 1, 1, 3]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [1]) == 0) // cannot find 'smallestChange' in scope
XCTAssertTrue(smallestChange(arr: [0, 1]) == 1) // cannot find 'smallestChange' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    var result = [
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    
    
    
    
    
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that accepts two arrays of strings and returns the array that has 
 total number of chars in the all strings of the array less than the other array.
 if the two arrays have the same number of chars, return the first array.
 Examples
 totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
 totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
 totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
 */
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi"]) == ["hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hii"]) == ["hi", "admin"]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: [] as [String], lst2: ["this"]) == [] as [String]) // cannot find 'totalMatch' in scope
XCTAssertTrue(totalMatch(lst1: ["this"], lst2: [] as [String]) == [] as [String]) // cannot find 'totalMatch' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    for i in 0..<#
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    
    
    for i in 0..
    
    
    
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    for i in
    
        
    var result = [[Double
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
    
    
    
    
    
    
    
    
    
    
    for
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that returns true if the given number is the multiplication of 3 prime numbers
 and false otherwise.
 Knowing that (a) is less then 100. 
 Example:
 30 = 2 * 3 * 5
 isMultiplyPrime(a: 30) == true
 */
func isMultiplyPrime(a: Int) -> Bool {
XCTAssertTrue(isMultiplyPrime(a: 5) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 30) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 8) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 10) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 125) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 105) == true) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 126) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 729) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 891) == false) // cannot find 'isMultiplyPrime' in scope
XCTAssertTrue(isMultiplyPrime(a: 1001) == true) // cannot find 'isMultiplyPrime' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i in 0..<
    for i in 0..<n
    
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i inout:
    return true
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    for i in 0..<Double]
    var i in 0..<n {
    if x = 1
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
    
    
    for i inout
    for i in
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Your task is to write a function that returns true if a number x is a simple
 power of n and false in other cases.
 x is a simple power of n if n**int=x
 For example:
 isSimplePower(x: 1, n: 4) == true
 isSimplePower(x: 2, n: 2) == true
 isSimplePower(x: 8, n: 2) == true
 isSimplePower(x: 3, n: 2) == false
 isSimplePower(x: 3, n: 1) == false
 isSimplePower(x: 5, n: 3) == false
 */
func isSimplePower(x: Int, n: Int) -> Bool {
XCTAssertTrue(isSimplePower(x: 16, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 143214, n: 16) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 4, n: 2) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 9, n: 3) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 16, n: 4) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 24, n: 2) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 128, n: 4) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 12, n: 6) == false) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 1) == true) // cannot find 'isSimplePower' in scope
XCTAssertTrue(isSimplePower(x: 1, n: 12) == true) // cannot find 'isSimplePower' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    
    for i in
    var i
    
    var
    var
    var
    
    
    var
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    for i inout
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    for i in
    
    
    var result =
    var
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout:
    
    
    
    
    
    
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
    
    
    
    
    for i inout
    
    
    
    
    
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes an integer a and returns true 
 if this ingeger is a cube of some integer number.
 Note: you may assume the input is always valid.
 Examples:
 iscube(a: 1) == true
 iscube(a: 2) == false
 iscube(a: -1) == true
 iscube(a: 64) == true
 iscube(a: 0) == true
 iscube(a: 180) == false
 */
func iscube(a: Int) -> Bool {
XCTAssertTrue(iscube(a: 1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 2) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: -1) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 64) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 180) == false) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1000) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 0) == true) // cannot find 'iscube' in scope
XCTAssertTrue(iscube(a: 1729) == false) // cannot find 'iscube' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    return
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    return 0
    
    return 0
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    var count =
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    return nums = 3
    var count = 0
    for i = 0
    var count
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    
    
    return nums = 2
    return num = 2
    return num = 2
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
    
    
    
    
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You have been tasked to write a function that receives 
 a hexadecimal number as a string and counts the number of hexadecimal 
 digits that are primes (prime number, or a prime, is a natural number 
 greater than 1 that is not a product of two smaller natural numbers).
 Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
 So you have to determine a number of the following digits: 2, 3, 5, 7, 
 B (=decimal 11), D (=decimal 13).
 Note: you may assume the input is always correct or empty string, 
 and symbols A,B,C,D,E,F are always uppercase.
 Examples:
 hexKey(num: "AB") == 1
 hexKey(num: "1077E") == 2
 hexKey(num: "ABED1A33") == 4
 hexKey(num: "123456789ABCDEF0") == 6
 hexKey(num: "2020") == 2
 */
func hexKey(num: String) -> Int {
 */
    
    
    
    
    
    
XCTAssertTrue(hexKey(num: "AB") == 1) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "1077E") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "ABED1A33") == 4) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "2020") == 2) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "123456789ABCDEF0") == 6) // cannot find 'hexKey' in scope
XCTAssertTrue(hexKey(num: "112233445566778899AABBCCDDEEFF00") == 12) // cannot find 'hexKey' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    
    
    var binary =
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    var binary = String()
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    var binary = ""
    
    
    
    for i
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    var binaryString(repep = ""
    
    
    
    var binary = ""
    for i = ""
    var remainder = ""
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    var binary = ""
    var binary = ""
    while decimal = ""
    dec
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    
    var binaryString(repep
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    var binary = ""
    
    
    
    
    
    
    var remainder = decimal =
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
    
    
    var binary = ""
    
    
    
    
    
    
    
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You will be given a number in decimal form and your task is to convert it to
 binary format. The function should return a string, with each character representing a binary
 number. Each character in the string will be '0' or '1'.
 There will be an extra couple of characters 'db' at the beginning and at the end of the string.
 The extra characters are there to help with the format.
 Examples:
 decimalToBinary(decimal: 15) == "db1111db"
 decimalToBinary(decimal: 32) == "db100000db"
 */
func decimalToBinary(decimal: Int) -> String {
XCTAssertTrue(decimalToBinary(decimal: 0) == "db0db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 32) == "db100000db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 103) == "db1100111db") // cannot find 'decimalToBinary' in scope
XCTAssertTrue(decimalToBinary(decimal: 15) == "db1111db") // cannot find 'decimalToBinary' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    
    var result = [String(s
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    for i in
    var arr = [Int
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
    for i in
    for i in 0
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    for i in 0..< s.count {
    for
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    
    
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a string s.
 Your task is to check if the string is hapswift or not.
 A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
 For example:
 isHappy(s: "a") == false
 isHappy(s: "aa") == false
 isHappy(s: "abcd") == true
 isHappy(s: "aabb") == false
 isHappy(s: "adb") == true
 isHappy(s: "xyy") == false
 */
func isHappy(s: String) -> Bool {
    var result = [String(repeektring = [String]()
    
    for i in s.enumerator
XCTAssertTrue(isHappy(s: "a") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aa") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "abcd") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "aabb") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "adb") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "xyy") == false) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxpoi") == true) // cannot find 'isHappy' in scope
XCTAssertTrue(isHappy(s: "iopaxioi") == false) // cannot find 'isHappy' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 return ["A+
    
 */
    
    
    
    
    
    return grades = [
    return ["
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
    
    
    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */

    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
    
    
    
    
    var
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */
    
    
    
    
    
    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 It is the last week of the semester and the teacher has to give the grades
 to students. The teacher has been making her own algorithm for grading.
 The only problem is, she has lost the code she used for grading.
 She has given you an array of GPAs for some students and you have to write 
 a function that can output an array of letter grades using the following table:
 GPA       |    Letter grade
 4.0                A+
 > 3.7                A 
 > 3.3                A- 
 > 3.0                B+
 > 2.7                B 
 > 2.3                B-
 > 2.0                C+
 > 1.7                C
 > 1.3                C-
 > 1.0                D+ 
 > 0.7                D 
 > 0.0                D-
 0.0                E
 Example:
 numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
 */
func numericalLetterGrade(grades: [Double]) -> [String] {
 */

    
    
XCTAssertTrue(numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.2]) == ["D+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.5]) == ["D-"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0]) == ["E"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) // cannot find 'numericalLetterGrade' in scope
XCTAssertTrue(numericalLetterGrade(grades: [0.0, 0.7]) == ["E", "D-"]) // cannot find 'numericalLetterGrade' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    var result = [[Double](repeeksegments = [Double
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
    
    
    
    
    var result = [[Double](
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns true if the string
 length is a prime number or false otherwise
 Examples
 primeLength(string: "Hello") == true
 primeLength(string: "abcdcba") == true
 primeLength(string: "kittens") == true
 primeLength(string: "orange") == false
 */
func primeLength(string: String) -> Bool {
    
    
    
    
XCTAssertTrue(primeLength(string: "Hello") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "abcdcba") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "kittens") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "orange") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "world") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "MadaM") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Wow") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "HI") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "go") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "gogo") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "aaaaaaaaaaaaaaa") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "Madam") == true) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "M") == false) // cannot find 'primeLength' in scope
XCTAssertTrue(primeLength(string: "0") == false) // cannot find 'primeLength' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeeksegments = [[Double](repeektring
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    var result = [[Double]()
    for i in
    
    
    
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    
    var result = [[Double](repeekwraisesultiplets.
    for i in 0..<Double
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
    
    
    var result
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer n, return the count of the numbers of n-digit
 positive integers that start or end with 1.
 */
func startsOneEnds(n: Int) -> Int {
    
    
XCTAssertTrue(startsOneEnds(n: 1) == 1) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 2) == 18) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 3) == 180) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 4) == 1800) // cannot find 'startsOneEnds' in scope
XCTAssertTrue(startsOneEnds(n: 5) == 18000) // cannot find 'startsOneEnds' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    var result = [[Double]()
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    
    var result = [[Double]
    var result = [[Double]()
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
    
    
    
    
    var result = [[Double](
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a positive integer N, return the total sum of its digits in binary.
 Example
 Variables:
 @N integer
 Constraints: 0 ≤ N ≤ 10000.
 Output:
 a string of binary number
 solve(N: 1000) == "1"
 solve(N: 150) == "110"
 solve(N: 147) == "1100"
 */
func solve(N: Int) -> String {
XCTAssertTrue(solve(N: 1000) == "1") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 150) == "110") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 147) == "1100") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 333) == "1001") // cannot find 'solve' in scope
XCTAssertTrue(solve(N: 963) == "10010") // cannot find 'solve' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double]
    
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    
    var result = [[Double
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double](
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    
    var result = [[Double](repeekw
    for (0
    
    for i in 0
    
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var sum = 0
    for i = 0
    var i = 0
    0
    for i
    0
    for
    = 0
    var
    0
    var
    for
    var
    var
    var
    var
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
    
    
    
    var result = [[Double
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given a non-empty array of integers lst. add the even elements that are at odd indices..
 Examples:
 add(lst: [4, 2, 6, 7]) == 2
 */
func add(lst: [Int]) -> Int {
XCTAssertTrue(Solution.add(lst: [4, 88]) == 88) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 5, 6, 7, 2, 122]) == 122) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 0, 6, 7]) == 0) // module 'Solution' has no member named 'add'
XCTAssertTrue(Solution.add(lst: [4, 4, 6, 8]) == 12) // module 'Solution' has no member named 'add'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    for word in s in s in s.enumerate(s.split(s.enumerate(s
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    var result = ""
    
    for word
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    var result = ""
    
    for word in
    for word in s
    in
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a string and returns an ordered version of it.
 Ordered version of string, is a string where all words (separated by space)
 are replaced by a new word where all the characters arranged in
 ascending order based on ascii value.
 Note: You should keep the order of words and blank spaces in the sentence.
 For example:
 antiShuffle(s: "Hi") == "Hi"
 antiShuffle(s: "hello") == "ehllo"
 antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
 */
func antiShuffle(s: String) -> String {
XCTAssertTrue(antiShuffle(s: "Hi") == "Hi") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "hello") == "ehllo") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "number") == "bemnru") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "abcd") == "abcd") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "") == "") // cannot find 'antiShuffle' in scope
XCTAssertTrue(antiShuffle(s: "Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") // cannot find 'antiShuffle' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    
    return [] as [Int,

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return lst, 1, 1, 1)
    return []

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return []
    
    return

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given a 2 dimensional data, as a nested arrays,
 which is similar to matrix, however, unlike matrices,
 each row may contain a different number of columns.
 Given lst, and integer x, find integers x in the array,
 and return array of tuples, [(x1, y1), (x2, y2) ...] such that
 each tuple is a coordinate - (row, columns), starting with 0.
 Sort coordinates initially by rows in ascending order.
 Also, sort coordinates of the row by columns in descending order.
 Examples:
 getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
 getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
 getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
 */
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    
    return []

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    var result = [
    var result = [
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    var sortedArray(
    
    
    
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    var sortedArray(
    var result = array = array
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
    
    
    
    
    
    var
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Given an array of non-negative integers, return a coswift of the given array after sorting,
 you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
 or sort it in descending order if the sum( first index value, last index value) is even.
 Note:
 * don't change the given array.
 Examples:
 sortArray(array: [] as [Int]) == [] as [Int]
 sortArray(array: [5]) == [5]
 sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
 sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
 */
func sortArray(array: [Int]) -> [Int] {
    var sortedArray(reversed(array:
    
    
    var sorted(
    var result = array = array = array
XCTAssertTrue(sortArray(array: [] as [Int]) == [] as [Int]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [5]) == [5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [2, 1]) == [1, 2]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) // cannot find 'sortArray' in scope
XCTAssertTrue(sortArray(array: [21, 14, 23, 11]) == [23, 21, 14, 11]) // cannot find 'sortArray' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var encrypted = ""
    for i
    for i
    
    var
    var
    for
    
    var
    
    var
    var
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var result = [
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    var encrypted = ""
    
    for i
    for i
    
        
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var encrypted = ""
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
    
    
    
    
    var result = ""
    
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated. 
 The alphabet should be rotated in a manner such that the letters 
 shift down by two multiplied to two places.
 For example:
 encrypt(s: "hi") == "lm"
 encrypt(s: "asdfghjkl") == "ewhjklnop"
 encrypt(s: "gf") == "kj"
 encrypt(s: "et") == "ix"
 */
func encrypt(s: String) -> String {
XCTAssertTrue(encrypt(s: "hi") == "lm") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hi") == "lm") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hi") == "lm") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "asdfghjkl") == "ewhjklnop") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "gf") == "kj") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "gf") == "kj") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "gf") == "kj") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "et") == "ix") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "et") == "ix") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "et") == "ix") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "faewfawefaewg") == "jeiajeaijeiak") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "hellomyfriend") == "lippsqcjvmirh") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") // extraneous argument label 's:' in call
XCTAssertTrue(encrypt(s: "a") == "e") // binary operator '==' cannot be applied to operands of type 'Void' and 'String'
XCTAssertTrue(encrypt(s: "a") == "e") // missing argument for parameter #2 in call
XCTAssertTrue(encrypt(s: "a") == "e") // cannot convert value of type 'String' to expected argument type 'UnsafeMutablePointer<CChar>?' (aka 'Optional<UnsafeMutablePointer<Int8>>')
XCTAssertTrue(encrypt(s: "a") == "e") // extraneous argument label 's:' in call

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst.count =
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst = l
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    guard lst
    
    guard lst
    
    
    
    
    
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    var smallest = lst = lst
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    guard lst = lst
    
    
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 Write a function next_smallest() that returns the 2nd smallest element of the array.
 Return nil if there is no such element.
 nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
 nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
 nextSmallest(lst: [] as [Int]) == nil
 nextSmallest(lst: [1, 1]) == nil
 */
func nextSmallest(lst: [Int]) -> Int? {
    
    
    
    guard lstored = lst = lst = l
XCTAssertTrue(nextSmallest(lst: [1, 2, 3, 4, 5]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [5, 1, 4, 3, 2]) == 2) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [] as [Int]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1, 1, 1, 0]) == 1) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [1, 1]) == nil) // cannot find 'nextSmallest' in scope
XCTAssertTrue(nextSmallest(lst: [-35, 34, 12, -45]) == -35) // cannot find 'nextSmallest' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
    var count
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
    var result = 0
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    var count = 0
    var
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
    
    
    
    
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You'll be given a string of words, and your task is to count the number
 of boredoms. A boredom is a sentence that starts with the word "I".
 Sentences are delimited by '.', '?' or '!'.
 For example:
 isBored(S: "Hello world") == 0
 isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
 */
func isBored(S: String) -> Int {
XCTAssertTrue(isBored(S: "Hello world") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "Is the sky blue?") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I love It !") == 1) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "bIt") == 0) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "I feel good today. I will be productive. will kill It") == 2) // cannot find 'isBored' in scope
XCTAssertTrue(isBored(S: "You and I are going for a walk") == 0) // cannot find 'isBored' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    
    
    
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return (x := 0
    return (x :=
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return x = 0
    
    
    
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    return lhs = [[Double](
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Create a function that takes 3 numbers.
 Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
 Returns false in any other cases.
 Examples
 anyInt(x: 5, y: 2, z: 7) == true
 anyInt(x: 3, y: 2, z: 2) == false
 anyInt(x: 3, y: -2, z: 1) == true
 anyInt(x: 3.6, y: -2.2, z: 2) == false
 */
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    
    return (
XCTAssertTrue(anyInt(x: 2, y: 3, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.5, y: 2, z: 3) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 1.5, y: 5, z: 3.5) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 6, z: 2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 4, y: 2, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2.2, y: 2.2, z: 2.2) == false) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: -4, y: 6, z: 2) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 2, y: 1, z: 1) == true) // cannot find 'anyInt' in scope
XCTAssertTrue(anyInt(x: 3, y: 4, z: 7) == true) // cannot find 'anyInt' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var newMessage
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var encoded = [
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    var encodedMessage = ""
    for character in
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    var encodedMessage = ""
    for
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    var encodedMessage = ""
    
    for char in message = ""
    for char
    for char
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    
    var encodedMessage = ""
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Write a function that takes a message, and encodes in such a 
 way that it swaps case of all letters, replaces all vowels in 
 the message with the letter that appears 2 places ahead of that 
 vowel in the english alphabet. 
 Assume only letters. 
 Examples:
 encode(message: "test") == "TGST"
 encode(message: "This is a message") == "tHKS KS C MGSSCGG"
 */
func encode(message: String) -> String {
    
    
    
    var encodedMessage = ""
    for char in message = ""
    for char in message
    
    
XCTAssertTrue(encode(message: "TEST") == "tgst") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "Mudasir") == "mWDCSKR") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "YES") == "ygs") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "This is a message") == "tHKS KS C MGSSCGG") // cannot find 'encode' in scope
XCTAssertTrue(encode(message: "I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") // cannot find 'encode' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    var max = 0
    var max = 0
    
    for i = 0
    for i in 0
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    return lst
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    
    return lst
    return lst
    return lst
    
    return
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    var max = 0
    
    for i
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
    
    
    return lkjasURAL
    return lkjasdkjklj
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    var largestPrime = 0
    var largestPrime
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 You are given an array of integers.
 You need to find the largest prime value and return the sum of its digits.
 Examples:
 skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
 skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
 skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
 skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
 skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
 skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
 */
func skjkasdkd(lst: [Int]) -> Int {
    
    
    
    
XCTAssertTrue(skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [8191, 123456, 127, 7]) == 19) // cannot find 'skjkasdkd' in scope
XCTAssertTrue(skjkasdkd(lst: [127, 97, 8192]) == 10) // cannot find 'skjkasdkd' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]
    for i in
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
    var primes = [Int]
    for i in 2..
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    var
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
    
    
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Implement a function that takes an non-negative integer and returns an array of the first n
 integers that are prime numbers and less than n.
 for example:
 countUpTo(n: 5) == [2, 3]
 countUpTo(n: 11) == [2, 3, 5, 7]
 countUpTo(n: 0) == [] as [Int]
 countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
 countUpTo(n: 1) == [] as [Int]
 countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
 */
func countUpTo(n: Int) -> [Int] {
XCTAssertTrue(countUpTo(n: 5) == [2, 3]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 6) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 7) == [2, 3, 5]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 10) == [2, 3, 5, 7]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 0) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 22) == [2, 3, 5, 7, 11, 13, 17, 19]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 1) == [] as [Int]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) // cannot find 'countUpTo' in scope
XCTAssertTrue(countUpTo(n: 101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) // cannot find 'countUpTo' in scope

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
    
    guard a
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
    guard a = multiply(l
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 2020, b: 1851) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 14, b: -15) == 20) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 76, b: 67) == 42) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 17, b: 27) == 49) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 1) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 0, b: 0) == 0) // cannot convert value of type 'Int' to expected argument type '[[Double]]'

import Foundation

func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}
```swift
import Foundation

/* 
 Function to multiply two matrices represented as 2D arrays of Doubles.
 Returns a new matrix that is the product of `lhs` and `rhs`, or `nil` if the matrices cannot be multiplied.
 */
func multiply(_ lhs: [[Double]], _ rhs: [[Double]]) -> [[Double]]? {
    guard lhs[0].count == rhs.count else { 
        return nil 
    }
    
    var result = [[Double]](repeating: [Double](repeating: 0, count: rhs[0].count), count: lhs.count)
    for i in 0..<lhs.count {
        for j in 0..<rhs[0].count {
            for k in 0..<rhs.count {
                result[i][j] += lhs[i][k] * rhs[k][j]
            }
        }
    }
    
    return result
}

/*
 Complete the function that takes two integers and returns 
 the product of their unit digits.
 Assume the input is always valid.
 Examples:
 multiply(a: 148, b: 412) == 16
 multiply(a: 19, b: 28) == 72
 multiply(a: 2020, b: 1851) == 0
 multiply(a: 14, b: -15) == 20
 */
func multiply(a: Int, b: Int) -> Int {
    
    
    
    
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type '[[Double]]?' to expected argument type 'Int'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // cannot convert value of type 'Int' to expected argument type '[[Double]]'
XCTAssertTrue(multiply(a: 148, b: 412) == 16) // extraneous argument labels 'a:b:' in call
XCTAssertTrue(multiply(a: 19, b: 28) == 72) // cannot convert value of type 'Int' to expected argument type '[[Double]]'